Transient neurodynamics and the role of sensory dead zones

John Milton¹, Gabor Stepan² and Tamas Insperger²

1) The Claremont Colleges, USA
2) Budapest University of Technology & Economics, Hungary
Collaborators

J. L. Cabrera (IVIC)
T. Insperger (Budapest)
T. Ohira (Nagoya)
W. Ou (Claremont)
A. Radunskaya (Claremont)
D. Reinkensmeyer (UCI)
G. Stepan (Budapest)
A. Solodkin (UCI)

Students

Total of 58 senior thesis students

E. Ginelli
E. Lopez
R. Meyer
E. Nordhoff
K. Oki
M. Zhvanetsky

Work supported by William R. Kenan, Jr. Charitable Trust, National Science Foundation and Howard Hughes Medical Institute
Classification of dynamics based on their asymptotic behaviors

Stable fixed-point

Van der Pol oscillator

Lorenz attractor
However, medical emergencies are typically transient events.
Intermittent motor control

- Advantages:
 - Easy to implement
 - Robust
 - Minimizes energy requirements
 - England: Loram, Gawthrop
 - Italy: Bottaro, Morasso
 - Japan: Asai, Nomura
Stick balancing at the fingertip (expert)
Stick balancing (beginner)
Transient dynamics

Intermittent control

Weibull-type Survival Curves

\[P(t_{sec} > t) \]

Day 1
Day 4
Day 7

Time (sec.)
Modeling stick balancing at the fingertip

\[\dot{\theta}(t) - \frac{6g}{\ell} \theta(t) = F_{fb}(t - \tau) \]

- Key point:

 If know \(\tau \) AND minimum length of stick that can be balanced, then can guess minimal form of

 \[F_{fb}(t - \tau) \]
Delays: mechanical perturbation

- Mehta & Schaal (2002)
 - 0.22s
- Milton lab
 - 0.225s (0.20-0.25s)
 - Five subjects
 - Initial angular deviation > 20°
Visual blank out experiments

- Initial angular deviations: 3-16°
Estimating delays from blank outs

- Delay (loss of control): 0.24s (0.19-0.39s)
- Delay (regain control): 0.22s (0.19-0.25s)
Model feedbacks for stick balancing

- Proportional-derivative
 - state predicted from its own delayed values

\[F_{fb} = K_p \theta(t - \tau) + K_d \dot{\theta}(t - \tau) \]

- Proportional-derivative-accelerative
 - state predicted from its own delayed values

\[F_{fb} = k_p \theta(t - \tau) + k_d \dot{\theta}(t - \tau) + k_a \ddot{\theta}(t - \tau) \]

- Distributed
 - Feedback involved in making the prediction

\[F_{fb}(t) = \int_{t-\tau}^{t} f\left[\theta(s - \tau), \dot{\theta}(s - \tau), F_{fb}(s)\right] ds \]
Stick balancing skill & stick length

- Vast majority of subjects do better than predicted by PD and PDA feedback.
- Very, very few approach limit suggested by distributed controller (1/48 subjects)
Intermittent control: “Drift-and-act”

- Possible realizations
 - Sensory dead zone
 - Nested control loops

Chaos in digital control

- Sensory dead zone is a strong nonlinearity
 - Complex oscillations
 - Intermittent “micro-chaos”
 - “Transient” chaos

Piecewise-constant linear feedback and human postural sway ("drift and act")

\[
\frac{dx}{dt} = \begin{cases}
\alpha x(t-\tau) + \xi(t) + C, & \text{if } x(t-\tau) < -X, \\
\alpha x(t-\tau) + \xi(t), & \text{if } -X \leq x(t-\tau) \leq X, \\
\alpha x(t-\tau) + \xi(t) - C, & \text{if } x(t-\tau) > X,
\end{cases}
\]

Stick balancing: Improved by low frequency, low amplitude vertical vibrations

- Simplest explanation posits a threshold

Is there a sensory dead zone for stick balancing?
Sensory dead zone
sagittal > frontal plane

- mean X deviation was 1.47 degrees
- mean Y deviation was 3.66 degrees.
Time-delayed PDA control with a threshold

\[\ddot{\theta}(t) - k\dot{\theta}(t) = F_{\text{control}} \]

where

\[F_{\text{control}} = F_p(t) + F_d(t) + F_a(t) \]

with

\[F_p(t) = \begin{cases}
0 & \text{if } |\theta(t - \tau)| < \theta_s, \\
-K_p\theta(t - \tau) & \text{if } |\theta(t - \tau)| \geq \theta_s,
\end{cases} \]

\[F_d(t) = \begin{cases}
0 & \text{if } |\dot{\theta}(t - \tau)| < \dot{\theta}_s, \\
-K_d\dot{\theta}(t - \tau) & \text{if } |\dot{\theta}(t - \tau)| \geq \dot{\theta}_s,
\end{cases} \]

\[F_a(t) = \begin{cases}
0 & \text{if } |\ddot{\theta}(t - \tau)| < \ddot{\theta}_s, \\
-K_a\ddot{\theta}(t - \tau) & \text{if } |\ddot{\theta}(t - \tau)| \geq \ddot{\theta}_s,
\end{cases} \]
Choose parameters so that:
upright position is unstable,
but stable range of parameters exists

Linear model, \(L = 1 \text{m}, k_p = 61, k_d = 14.9, k_o = 0.9 \)

Nonlinear model with deadzones \(\theta_{\text{th}} = 0.01 \text{ [rad]}, \dot{\theta}_{\text{th}} = 0.01 \text{ [rad/s]}, \ddot{\theta}_{\text{th}} = 0.01 \text{ [rad/s}^2] \)
Conclusions

- Presence of sensory dead zone in stick balancing are important

 - If system in stable in absence of dead zone, then it is stable in presence of dead zone.

 - Effect of dead zone is to produce complex dynamics including oscillations and chaos

 - If system is unstable in absence of dead zone, it can sometimes produce transient stabilizations

- Most subjects perform the tasks using parameters that are not tuned for optimal performance