Continuous-time feedback control of cardiac alternans in Purkinje fibers

Alejandro Garzon
School of Mathematics
Universidad Sergio Arboleda

Roman O. Grigoriev and Flavio H. Fenton
School of Physics
Georgia Institute of Technology
Contents

- Relevance of the suppression of alternans for the prevention of arrhythmias
- Alternans in one-dimensional cardiac tissue (fibers)
- Suppression of alternans as a control problem
- Reduction to the control of a linear map
- Results: continuous-time control is successful
- Conclusions and perspectives
From normal rhythm to ventricular fibrillation

Normal rhythm → Alternans → Tachycardia → Fibrillation
Paced fiber of cardiac tissue

Pacing electrode, current density:

\[I_p(x, t) = I_p^0(t)g(x - x_p) \]

Traveling wave

Recording electrode \(V(t) \)

Control electrode, current density:

\[I_c(x, t) = I_c^0(t)g(x - x_c) \]
Alternans

Voltage signal at \(u(t) \) at a particular location \(x \)

APD: action potential duration

\[
T > T_c \quad \text{(slow pacing)}
\]

\[
\text{Normal rhythm,}
\]

\[
\text{APD}_n = \text{APD}_{n+1}
\]

\[
T < T_c \quad \text{(fast pacing)}
\]

\[
\text{APD}_n \begin{cases}
\neq \text{APD}_{n+1} \\
\approx \text{APD}_{n+2}
\end{cases}
\]

Alternans
Model of electrical activity

\[
\partial_t V = D \partial_x^2 V - \frac{1}{C_m} \left[I_{\text{ion}}(V, \dot{y}) + I_p(x, t) + I_c^0(t) g(x - x_c) \right]
\]

\[
\partial_t \dot{y} = h(V, \dot{y})
\]

with \(I_{\text{ion}}(V, \dot{y}), h(V, \dot{y}) \) taken from the 4-variable Fenton-Cherry Purkinje model, \(\dot{y} = [y_1, y_2, y_3] \)

All equations are gathered in a single one

\[
\partial_t z = \tilde{D} \partial_x^2 z + F(z) + \tilde{I}_p(x, t) + I_c^0(t) g(x - x_c) \hat{u},
\]

where \(z(x, t) = [u(x, t), \dot{y}(x, t)] \), \(u \) is the scaled voltage

\[
\hat{u} = [1, 0, 0, 0]
\]

\[
u = \frac{V - V_{\text{off}}}{V_{\text{sc}}}, \quad 0 \leq u \leq 1
\]
Fenton-Cherry four-variable Purkinje model
Control problem

\[\partial_t z = \tilde{D} \partial_x^2 z + F(z) + \tilde{I}_p(x, t) + I_c^0(t)g(x-x_c)\hat{u}, \]

Find \(I_c^0(t) \) such that the normal rhythm is the asymptotic state even when \(T < T_c \). **Difficult problem!**

Simplified approximation to the dynamics

\[\xi^{n+1} = A\xi^n + B^n I_n^c, \quad \xi^n = [\xi_1^n, \xi_2^n, ..., \xi_m^n], \]

Find \(I_n^c \) such that \(\xi^n \to 0 \)

Easier problem!
Calculation of normal rhythm \(z^*(x, t) \) (periodic orbit)

\[
z^*(x, 0) = \Phi[T, 0; z^*(x, 0)]
\]

by Newton-Krylov method.

Consider the deviation from the normal rhythm

\[
\delta z(x, t) = z(x, t) - z^*(x, t)
\]

Evolution equation for the deviation

\[
\partial_t \delta z = \left(\tilde{D} \partial_x^2 + J_F[z^*(t)] \right) \delta z + I^0_c(t) g(x - x_c) \mathcal{A}(t)
\]

Linear periodic operator
Galerkin projection

\[\delta z(x, t) = \sum_{i=1}^{\infty} \xi_i(t) e_i(x, t) \]

where the periodic basis \(e_i(x, t) \) is given by

\[U(T, 0) e_i(x, 0) = \lambda_i e_i(x, 0) \]

Projecting the dynamics of \(\delta z(x, t) \) onto \(e_i(x, t) \)

\[\dot{\xi}_i = \sigma_i \xi_i + b_i(t) I_c^0(t) \]

where

\[b_i(t) = \langle f_i(x, t), g(x - x_c) \rangle \]

adjoint eigenfunctions

Discarding highly stable modes and considering discrete times \(t_n = n\Delta T \)

\[\xi^{n+1} = A\xi^n + B^n I_c^n \quad \text{with} \quad \xi^n = [\xi_1(t_n), \xi_2(t_n), \ldots, \xi_m(t_n)] \]
Calculation of feedback

\[I_c^n = K^n \xi^n \]

\[\xi_i(t_n) = \langle f_i(x, t_n), \delta z(x, t_n) \rangle \]

Linear Quadratic Regulator control: choose \(K \) so as to minimize the quadratic form

\[
\sum_{i=1}^{\infty} \left[(\xi^n)^\dagger Q_n \xi^n + (I_c^n)^2 R \right]
\]

\((Q_n)_{i,j} = \langle e_i(x, t_n), e_j(x, t_n) \rangle \) and \(R > 0 \) is a scalar
Impulsive and continuous-time control

Impulsive
\[\xi^{n+1} = A\xi^n + BI_c^n \]

Piecewise constant stroboscopic
\[\xi^{n+1} = A\xi^n + BI_c^n \]
\[I_c^n = [I_c^{n,1}, I_c^{n,2}, I_c^{n,3}, I_c^{n,4}] \]

Piecewise constant periodic
\[\xi^{n+1} = A\xi^n + B^n I_c^n \]
Comparison of control methods

$L = 1 \text{ cm}$
$T = 188 \text{ ms}$
$R = 10^5$
$s = 20$

- **Impulsive**
- **Piecewise constant stroboscopic**
- **Piecewise constant periodic**

![Graph showing comparisons of control methods](image-url)
Range of success and number of unstable eigenvalues

\[U(T, 0) e_i(x, 0) = \lambda_i e_i(x, 0) \]

<table>
<thead>
<tr>
<th>Method</th>
<th>Succeeds on</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impulsive</td>
<td></td>
</tr>
<tr>
<td>Piecewise constant stroboscopic</td>
<td></td>
</tr>
<tr>
<td>Piecewise constant periodic</td>
<td></td>
</tr>
</tbody>
</table>
Piecewise constant stroboscopic control, different number of subintervals s

$L = 1 \text{ cm}$
$T = 188 \text{ ms}$
$R = 10^4$
Piecewise constant periodic control, different number of subintervals s

$L = 1\text{ cm}$
$T = 188\text{ ms}$
$R = 10^5$
Conclusions and perspectives

- Continuous-time control suppresses alternans faster compared to impulsive control.

- Continuous-time control suppresses alternans for longer fibers (up to 3 cm) and a wider range of pacing periods compared to impulsive control.

- The control methods need to be integrated with an observer which would reconstruct the system state from measurements of voltage in order to be applied in an experimental setting.