The Optimal Uncertainty Quantification framework applied to the seismic safety assessment of a truss structure

Houman Owhadi
C. Scovel, T. Sullivan, M. McKerns and M. Ortiz
SIAM-UQ 12, April 2012
The UQ challenge in the certification context

\[G : \chi \longrightarrow \mathbb{R} \]
\[X \longrightarrow G(X) \]
\[\mathbb{P} \in \mathcal{M}(\chi) \]

You want to certify that

\[\mathbb{P}[G(X) \geq a] \leq \epsilon \]

Problem

- You don’t know \(G \).
- You don’t know \(\mathbb{P} \).
The UQ challenge in the certification context

\[G : \chi \rightarrow \mathbb{R} \]

\[X \rightarrow G(X) \]

You want to certify that

\[\mathbb{P}\left[G(X) \geq a\right] \leq \epsilon \]

You only know

\[(G, \mathbb{P}) \in \mathcal{A} \]

\[\mathcal{A} \subset \left\{ (f, \mu) \mid f : \chi \rightarrow \mathbb{R}, \mu \in \mathcal{P}(\chi) \right\} \]
Optimal bounds on $\mathbb{P}[G(X) \geq a]$

$U(\mathcal{A}) := \sup_{(f,\mu) \in \mathcal{A}} \mu[f(X) \geq a]$

$L(\mathcal{A}) := \inf_{(f,\mu) \in \mathcal{A}} \mu[f(X) \geq a]$

$L(\mathcal{A}) \leq \mathbb{P}[G(X) \geq a] \leq U(\mathcal{A})$

$U(\mathcal{A}) \leq \epsilon$: Safe even in worst case.

$\epsilon < L(\mathcal{A})$: Unsafe even in best case.

$L(\mathcal{A}) \leq \epsilon < U(\mathcal{A})$: Cannot decide.

Unsafe due to lack of information.
OUQ problems are a priori infinite dimensional, non-convex and highly constrained.

But as in linear programming, OUQ problems reduce to searches over finite dimensional families of extremal scenarios of A.

The dimension of the reduced problem is proportional to the number of probabilistic inequalities that describe A.

\[\text{ex}(A) \]
A simple example

What is the least upper bound on \(\mathbb{P}[X \geq a] \)?

If all you know is \(\mathbb{E}[X] \leq m \)

and \(\mathbb{P}[0 \leq X \leq 1] = 1 \)?

Answer

\[
\sup_{\mu \in \mathcal{A}} \mu \left[X \geq a \right]
\]

\[\mathcal{A} = \{ \mu \in \mathcal{M}([0,1]) \mid \mathbb{E}_\mu[X] \leq m \}\]
You are given one pound of play-doh. How much mass can you put above \(a \) while keeping the seesaw balanced around \(m \)?

Answer

Markov’s inequality

\[
\sup_{\mu \in \mathcal{A}} \mu \left[X \geq a \right] = \frac{m}{a}
\]

\[\mathcal{A} = \{ \mu \in \mathcal{M}([0, 1]) \mid \mathbb{E}_{\mu}[X] \leq m \} \]
Reduction theorems

\[A = \left\{ (f, \mu) \mid f: \chi_1 \times \cdots \times \chi_m \to \mathbb{R}, \mu = \mu_1 \otimes \cdots \otimes \mu_m, \mathcal{G}(f, \mu) \leq 0 \right\} \]

\[\mathcal{G}(f, \mu) \leq 0 \iff \begin{cases} \text{n'} generalized moment constraints on } \mu, & \mathbb{E}_\mu[\varphi_{f,j}^j] \leq 0 \\ \text{n}_k \text{ generalized moment constraints on } \mu_k, & \mathbb{E}_{\mu_k}[\psi_{f,k,j}^j] \leq 0 \end{cases} \]

Theorem

\[\sup_{(f, \mu) \in A} \mathbb{E}_\mu[qf] = \sup_{(f, \mu) \in A_\Delta} \mathbb{E}_\mu[qf] \]

\[A_\Delta = \left\{ (f, \mu) \in A \mid \mu_k \text{ is a sum of at most } \text{n'} + \text{n}_k + 1 \text{ weighted Dirac measures on } \chi_k \right\} \]
Reduction of optimization variables

\[\{ f : \mathcal{X} \to \mathbb{R}, \mu \in \mathcal{P}(\mathcal{X}) \} \]

\[\begin{align*}
\{ f : \mathcal{X} \to \mathbb{R}, \mu \in \mathcal{P}(\mathcal{X}) \mid \mu &= \sum_{i=1}^{k} \alpha_k \delta_{x_k} \} \\
\{ f : \{1, 2, \ldots, n\} \to \mathbb{R}, \mu \in \mathcal{P}(\{1, 2, \ldots, n\}) \} \\
\{ \{1, 2, \ldots, q\}, \mu \in \mathcal{P}(\{1, 2, \ldots, n\}) \}
\end{align*} \]
Non-convex and infinite dimensional optimization problems

Can be considered as a **generalization of classical Chebyshev inequalities**

History of classical inequalities: Karlin, Studden (1966, Tchebycheff systems with applications in analysis and statistics)

Connection between Chebyshev inequalities and optimization theory

- Mulholland & Rogers (1958, Representation theorems for distribution functions)
- Godwin (1973, Manipulation of voting schemes: a general result)
- Olhin & Pratt (1958, A multivariate Tchebycheff inequality)
- Classical Markov-Krein theorem (Karlin, Studden, 1958)
- Dynkin (1978, Sufficient statistics & extreme points)
- Karr (1983, Extreme points of probability measures with applications)
- Artzner et al (1997, risk measures, value at risk, etc…)
- Betsimas & Popescu (2008, convex optimization approach to inequalities in prob. theo.)
$\mathcal{U}(\mathcal{A}) := \sup_{(g, \mu) \in \mathcal{A}} \mathbb{E}_\mu[q_g]$

Our work: Further generalization to
• Independence constraints
• More general domains (Suslin spaces) (non metric, non compact)
• More general classes of functions (measurable) (non continuous, non-bounded)
• More general classes of probability measures
• More general constraints (inequalities, on measures and functions)

Theory of majorization
• Marshall & Olkin (1979, Inequalities: Theory of majorization and its applications)
Inequalities of

• Anderson (1955, the integral of a symmetric unimodal function over a symmetric convex set and some probability inequalities)
• Hoeffding (1956, on the distribution of the number of successes in independent trials)
• Joe (1987, Majorization, randomness and dependence for multivariate distributions)
• Bentkus, Geuze, Van Zuijlen (2006, Optimal Hoeffding like inequalities under a symmetry assumption)
• Pinelis (2007, Exact inequalities for sums of asymmetric random variables with applications.
 2008, On inequalities for sums of bounded random variables)

Our proof rely on

• Winkler (1988, Extreme points of moment sets)
• Follows from an extension of Choquet theory (Phelps 2001, lectures on Choquet's theorem) by Von Weizsacker & Winkler (1979, Integral representation in the set of solutions of a generalized moment problem)
• Kendall (1962, Simplexes & Vector lattices)
Application: Optimal concentration inequality

\[A_{MD} := \left\{ (f, \mu) \mid f : \mathcal{X}_1 \times \cdots \times \mathcal{X}_m \to \mathbb{R}, \mu \in \mathcal{M}(\mathcal{X}_1) \otimes \cdots \otimes \mathcal{M}(\mathcal{X}_m), \mathbb{E}_\mu[f] \leq 0, \text{Osc}_i(f) \leq D_i \right\} \]

\[\text{Osc}_i(f) := \sup_{(x_1,\ldots,x_m) \in \mathcal{X}} \sup_{x'_i \in \mathcal{X}_i} (f(\ldots,x_i,\ldots) - f(\ldots,x'_i,\ldots)). \]

\[\mathcal{U}(A_{MD}) := \sup_{(f,\mu) \in A_{MD}} \mu[f(X) \geq a] \]

McDiarmid inequality \[\mathcal{U}(A_{MD}) \leq \exp \left(-2 \frac{a^2}{\sum_{i=1}^{m} D_i^2} \right) \]
Reduction of optimization variables

\[A_C := \left\{ (C, \alpha) \mid \alpha \in \bigotimes_{i=1}^{m} \mathcal{M}(\{0, 1\}), \quad \mathbb{E}_\alpha[h^C] \leq 0 \right\} \]

\[h^C : \{0, 1\}^m \rightarrow \mathbb{R} \]

\[t \rightarrow a - \min_{s \in C} \sum_{i : s_i \neq t_i} D_i \]

\[\mathcal{U}(A_C) := \sup_{(C, \alpha) \in A_C} \alpha[h^C \geq a] \]

Theorem

\[\mathcal{U}(A_{MD}) = \mathcal{U}(A_C) \]
Explicit Solution m=2

Theorem

\[
\mathcal{U}(\mathcal{A}_{MD}) = \begin{cases}
0 & \text{if } D_1 + D_2 \leq a \\
\frac{(D_1 + D_2 - a)^2}{4D_1 D_2} & \text{if } |D_1 - D_2| \leq a \leq D_1 + D_2 \\
1 - \frac{a}{\max(D_1, D_2)} & \text{if } 0 \leq a \leq |D_1 - D_2|
\end{cases}
\]

OUQ bound

\(a = 1\)

\[
C = \{(1, 1)\}
\]

\[
h^C(s) = a - (1 - s_1)D_1 - (1 - s_2)D_2
\]

Corollary

If \(D_1 \geq a + D_2\), then

\[
\mathcal{U}(\mathcal{A}_{MD})(a, D_1, D_2) = \mathcal{U}(\mathcal{A}_{MD})(a, D_1, 0)
\]
Explicit Solution $m=3$

Theorem

$m = 3 \quad D_1 \geq D_2 \geq D_3$

$U(A_{MD}) = \max(F_1, F_2)$

\[F_1 := \begin{cases}
0 & \text{if } D_1 + D_2 + D_3 \leq a \\
\frac{(D_1+D_2+D_3-a)^3}{27D_1D_2D_3} & \text{if } D_1 + D_2 - 2D_3 \leq a \leq D_1 + D_2 + D_3 \\
\frac{(D_1+D_2-a)^2}{4D_1D_2} & \text{if } D_1 - D_2 \leq a \leq D_1 + D_2 - 2D_3 \\
1 - \frac{a}{\max(D_1,D_2)} & \text{if } 0 \leq a \leq D_1 - D_2
\end{cases} \]

\[F_2 := \max_{i \in \{1,2,3\}} \phi(\gamma_i)\psi(\gamma_i) \]

\[(1 + \gamma)^3 - \frac{5D_2 - 2D_3}{2D_2 - D_3}(1 + \gamma)^2 + \frac{4D_2 - a}{2D_2 - D_3} = 0, \]
Caltech Small Particle Hypervelocity Impact Range

We want to certify that

\[
P[G = 0] \leq \epsilon
\]
Caltech Hypervelocity Impact Surrogate Model

- **Plate thickness** \(h \in \mathcal{X}_1 := [1.524, 2.667] \text{ mm}, \)
- **Plate Obliquity** \(\alpha \in \mathcal{X}_2 := [0, \frac{\pi}{6}] \),
- **Projectile velocity** \(v \in \mathcal{X}_3 := [2.1, 2.8] \text{ km} \cdot \text{s}^{-1} \).

Thickness, obliquity, velocity: independent random variables

Mean perforation area: in between 5.5 and 7.5 mm\(^2\)

Deterministic surrogate model for the perforation area (in mm\(^2\))

\[
H(h, \alpha, v) = K \left(\frac{h}{D_p} \right)^p (\cos \alpha)^u \left(\tanh \left(\frac{v}{v_{bl}} - 1 \right) \right)^m + \]

\(H_0 = 0.5794 \text{ km} \cdot \text{s}^{-1}, \quad s = 1.4004, \quad n = 0.4482, \quad K = 10.3936 \text{ mm}^2, \)

\(p = 0.4757, \quad u = 1.0275, \quad m = 0.4682. \quad v_{bl} := H_0 \left(\frac{h}{(\cos \alpha)^n} \right)^s \)
Optimal bound on the probability of non perforation

\[A := \left\{ (f, \mu) \mid \mu = \mu_1 \otimes \mu_2 \otimes \mu_3, \\
5.5 \, mm^2 \leq \mathbb{E}_\mu[f] \leq 7.5 \, mm^2, \\
f = H \right\} \]

\[\mathcal{U}(A) := \sup_{(f, \mu) \in A} \mu[f(X) = 0] \]

Application of the reduction theorem

The measure of probability can be reduced to the tensorization of 2 Dirac masses on thickness, obliquity and velocity

\[\mathcal{U}(A)^{\text{num}} = 37.9\% \]
The optimization variables can be reduced to the tensorization of 2 Dirac masses on thickness, obliquity and velocity.

Support Points at iteration 0
Numerical optimization

Support Points at iteration 150
Numerical optimization

Support Points at iteration 200
Velocity and obliquity marginals each collapse to a single Dirac mass. The plate thickness marginal collapses to have support on the extremes of its range.

Probability non-perforation maximized by distribution supported on minimal, not maximal, impact obliquity. Dirac on velocity at a non extreme value.
Important observations

Extremizers are singular

They identify key players i.e. vulnerabilities of the physical system

Extremizers are attractors
Initialization with 3 support points per marginal

Support Points at iteration 0
Initialization with 3 support points per marginal

Support Points at iteration 500
Initialization with 3 support points per marginal

Support Points at iteration 1000
Initialization with 3 support points per marginal

Support Points at iteration 2155
Initialization with 5 support points per marginal

Support Points at iteration 0
Initialization with 5 support points per marginal

Support Points at iteration 1000
Initialization with 5 support points per marginal

Support Points at iteration 3000
Initialization with 5 support points per marginal

Support Points at iteration 7100
Seismic Safety Assessment of Truss Structures
$F(a) = \min_i (S_i - \|Y_i\|_\infty)$

S_i: Yield strain of member i

$Y_i(t)$: Axial strain of member i
$F_{\text{min}}(\text{Yield Strain - Axial Strain})$

We want to certify that

$$\mathbb{P} \left[F(\alpha) \leq 0 \right] \leq \epsilon$$
Historical Data Method

1940 Elcentro

2010 Haiti

1999 Izmit
Matsuda-Asano shape function (mean power spectrum)

\[s(\omega) := \frac{\omega^2 \omega^2}{(\omega^2_g - \omega^2)^2 + 4\xi^2 g \omega^2 \omega^2} \]
OUQ vs Filtered White Noise

A: Set of measures μ on A

- Maximum grounded acceleration bounded
- Mean power spectrum given

Diagram:
- Hexagon labeled A
- Star at each corner labeled μ
- Arrow pointing to μ from the center labeled μwn
Modeling in the frequency domain

\[a := \sum_{k=1}^{W} \left((A_{6k-5}, A_{6k-4}, A_{6k-3}) \cos(2\pi \omega_k t) \right. \]

\[\quad + \left. (A_{6k-2}, A_{6k-1}, A_{6k}) \sin(2\pi \omega_k t) \right) \]

\[\omega_k := \frac{k}{T} \quad T = 20 \text{ s} \quad W := 100 \]

\[\frac{1}{T} \int_0^T |a|^2 \, dt \leq \frac{a_{\text{max}}^2}{2} \]

\[A := (A_1, \ldots, A_{6W}) \]

\[\mathbb{P} \left[A \in B(0, a_{\text{max}}) \right] = 1 \]
Esteva’s semi-empirical expression

\[a_{\text{max}} := \frac{a_0 e^{\lambda M_L}}{(R_0 + R)^2} \]

R: source to site distance
\[\mathbb{E} \left[A_i^2 \right] = b_i \]

\[b_{6k-j} = \frac{a_{\text{max}}^2}{12} \frac{s(\omega_k)}{\sum_{n=1}^{W} s(\omega_n)} \] \quad j \in \{0, \ldots, 5\}

Matsuda-Asano shape function

\[s(\omega) := \frac{\omega^2 \omega^2}{(\omega_g^2 - \omega^2)^2 + 4\xi_g^2 \omega_g^2 \omega^2} \]

\(\omega_g \): natural frequency of the site.

\(\xi_g \): natural damping factor of the site.
The OUQ problem

A: Set of measures μ on A

$\mu[\{A \in B(0, a_{\text{max}})\}] = 1$

$\mathbb{E}_\mu[A_i^2] = b_i$

$$\sup_{\mu \in A} \mu[F(A) \leq 0]$$
Reduction to weighted sums of Diracs

A: Set of measures μ on A

$$\mu \left[A \in B(0, a_{\max}) \right] = 1 \quad \mathbb{E}_\mu [A_i^2] = b_i$$

$$\mu = \sum_{j=1}^{6W+1} p_j \delta_{Z_j}$$

$$Z_j \in \mathbb{R}^{6W} \cap B(0, a_{\max})$$

$$\sum_{j=1}^{6W+1} p_j = 1$$

The reduced problem is of dimension $(6W+1) \times (6W+1)$
Reduction based on strong duality

\[
\sup_{\mu \in \mathcal{A}} \mu \left[F(A) \leq 0 \right] = \inf_{H \in \mathbb{R}^{6W}} \sup_{x \in \mathbb{R}^{6W} \cap B(0, a_{max})} \chi(x) + \sum_{i=1}^{6W} H_i (b_i - x_i^2)
\]

\[
\chi(x) = 0 \text{ if } A = x \text{ does not fail}
\]

\[
\chi(x) = 1 \text{ if } A = x \text{ fails}
\]

The reduced problem is of dimension: 12W and convex in H
Vulnerability Curves (vs earthquake magnitude)
Modeling in the frequency domain

Number of truss structure (electric tower) members: 198

Number of random Fourier coefficients (with unknown pdf): 600

Dimension of the Reduced Problem: 1200

Reduced problem solved with a Differential Evolution Algorithm modified to use large-scale parallel computing resources

Differential Evolution Algorithm population size: 40

High performance computer cluster: 88 cores
 shc (PSAAP) with 11 core-4 nodes (44 total)
 foxtrot (DANSE) with 4 core-12 nodes, 11/12 (44 total)

Convergence time: 15 hours

Number of iterations: 2000

Number of function evaluations: 35,000 to 50,000
Modeling in the physical domain

\[a = \psi \star s \]
\[s(t) := \sum_{i=1}^{B} X_i s_i(t) \quad B = 20 \]

\[s_i(t) \quad \text{\(\tau_i\) independent} \]
\[\tau_i \in [0, 30 \text{s}] \]
\[1 \text{s} \leq \mathbb{E}[\tau_i] \leq 2 \text{s} \]

\[X_i \in [-a_{\text{max}}, a_{\text{max}}]^3 \]
\[X_{i,j} \text{ independent} \]
\[\mathbb{E}[X_i] = 0 \]
$a = \psi \star s$
Application of OUQ reduction theorems

\[\mathcal{U}(A) := \sup_{(F, \mu) \in A} \mu [F \leq 0] \]

The optimum can be achieved by

- Handling \(\psi \) as a deterministic optimization variable.
- Assuming that the measure on each \(X_{i,j} \) is the tensorization of two Dirac masses in \([-a_{\text{max}}, a_{\text{max}}]\).
- Assuming that the measure on each \(\tau_i \) is the weighted sum of 2 Dirac masses in \([0, \tau_{\text{max}}]\).

Identification of the weakest elements
Power Spectrum
Positions (abscissa, in m · s\(^{-2}\)) and weights (ordinates) of the Dirac masses associated with the measure of probability on X\(_1\), . . . , X\(_B\) at the extremum for earthquakes of magnitude ML = 6, ML = 6.5 and ML = 7. The positions in abscissa correspond to the possible amplitudes of the impulses Xi.
Second reduction (positions of the Diracs)

\[\mathcal{A} = \{(f, \mu) \in \mathcal{G} \times \bigotimes_{i=1}^{m} \mathcal{M}(\chi_i) \mid \Phi(f, \mu) \leq 0\} \]

\(\mathcal{G} \subset \mathcal{F} \): Set of real measurable functions on \(\chi := \chi_1 \times \cdots \times \chi_m \)

\(\Phi(f, \mu) \leq 0 \iff \mathbb{E}_\mu[\varphi_j \circ f] \leq 0 \quad 1 \leq j \leq n \)

Theorem

\[\sup_{(f, \mu) \in \mathcal{A}} \mathbb{E}_\mu[q \circ f] = \sup_{(h, \alpha) \in \mathcal{A}_\mathcal{D}} \mathbb{E}_\alpha[q \circ h] \]

\[\mathcal{A}_\mathcal{D} = \{(h, \alpha) \in \mathcal{G}_\mathcal{D} \times \bigotimes_{i=1}^{m} \mathcal{M}(\mathcal{D}') \mid \Phi(f, \mu) \leq 0\} \]

\[\mathcal{D}' = \{0, \ldots, n\} \]

\(\mathcal{G}_\mathcal{D} \subset \mathcal{F}_\mathcal{D} \): Real functions on \(\mathcal{D} := \{0, \ldots, n\}^m \)
\[\mathcal{G}_D := \mathcal{F} \left[\mathcal{G} \times \bigotimes_{i=1}^{m} \Delta_n(x_i) \right] \]

\[\mathcal{F}: \mathcal{F} \times \bigotimes_{i=1}^{m} \Delta_n(x_i) \longrightarrow \mathcal{F}_D \]

\[(f, \bigotimes_{i=1}^{m} \left(\sum_{k=0}^{n} \alpha_i^k \delta_{x_i^k} \right)) \longrightarrow (s_1, \ldots, s_m) \rightarrow f(x_1^{s_1}, \ldots, x_m^{s_m}) \]

\[f: \mathcal{X}_1 \times \mathcal{X}_2 \rightarrow \mathbb{R} \]

\[h: \{0, 1\} \times \{0, 1\} \rightarrow \mathbb{R} \]
Reduction of optimization variables

\[\{ f : \mathcal{X} \rightarrow \mathbb{R}, \mu \in \mathcal{P}(\mathcal{X}) \} \]

\[\{ f : \mathcal{X} \rightarrow \mathbb{R}, \mu \in \mathcal{P}(\mathcal{X}) | \mu = \sum_{i=1}^{k} \alpha_k \delta_{x_k} \} \]

\[\{ f : \{1, 2, \ldots, n\} \rightarrow \mathbb{R}, \mu \in \mathcal{P}(\{1, 2, \ldots, n\}) \} \]

\[\{ \{1, 2, \ldots, q\}, \mu \in \mathcal{P}(\{1, 2, \ldots, n\}) \} \]