Uncertainty Quantification and Model Validation in Flight Control Applications

Raktim Bhattacharya
Associate Professor

Department of Aerospace Engineering,
Texas A&M University.

2012 SIAM Conference on Uncertainty Quantification.
Model Validation

- **Model Validation Question:** Given two systems S_1 and S_2, how close are they?
Model Validation

- **Model Validation Question:** Given two systems S_1 and S_2, how close are they?
- How do we define close? Two systems are close if they have similar input-output properties.
Model Validation

- **Model Validation Question**: Given two systems S_1 and S_2, how close are they?
- How do we define close? Two systems are close if they have similar input-output properties.

Mathematically:

- $u(t)$
- $y_1(t)$
- $y_2(t)$

Systems are modeled using ordinary differential equations:

\[
\dot{x} = f(x, u), \quad y = g(x)
\]

Extend this to model validation with respect to experimental data.
Model Validation

- **Model Validation Question:** Given two systems S_1 and S_2, how close are they?
- How do we define close? Two systems are close if they have similar input-output properties.

- Systems are modeled using ordinary differential equations

\[
\dot{x} = f(x, u), \quad y = g(x).
\]
Model Validation

- **Model Validation Question**: Given two systems S_1 and S_2, how close are they?
- How do we define close? Two systems are close if they have similar input-output properties.

- Systems are modeled using ordinary differential equations

\[
\dot{x} = f(x, u), \quad y = g(x).
\]

- Extend this to model validation with respect to experimental data.
Existing Methods

\[u(t) \rightarrow S_1 \rightarrow y_1(t) \]
\[\quad \rightarrow S_2 \rightarrow y_2(t) \]

Linear Systems: Rich in literature in both time and frequency domain.
Existing Methods

Linear Systems: Rich in literature in both time and frequency domain.

Nonlinear Systems: Only time domain. Mostly based on Monte-Carlo & statistical correlation between output trajectories.
Existing Methods

Linear Systems: Rich in literature in both time and frequency domain.

Nonlinear Systems: Only time domain. Mostly based on Monte-Carlo & statistical correlation between output trajectories.

- Recently sum-of-squares (SOS) based methods have been used to develop barrier certificates.
Existing Methods

Linear Systems: Rich in literature in both time and frequency domain.

Nonlinear Systems: Only time domain. Mostly based on Monte-Carlo & statistical correlation between output trajectories.

▶ Recently sum-of-squares (SOS) based methods have been used to develop barrier certificates.
▶ Barrier certificates guarantee output trajectories are contained in the same set.
Existing Methods

![Diagram](image)

Linear Systems: Rich in literature in both time and frequency domain.

Nonlinear Systems: Only time domain. Mostly based on Monte-Carlo & statistical correlation between output trajectories.

- Recently sum-of-squares (SOS) based methods have been used to develop barrier certificates.
- Barrier certificates guarantee output trajectories are contained in the same set.
- Model validation \equiv set containment.
Existing Methods

Linear Systems: Rich in literature in both time and frequency domain.

Nonlinear Systems: Only time domain. Mostly based on Monte-Carlo & statistical correlation between output trajectories.

- Recently sum-of-squares (SOS) based methods have been used to develop barrier certificates.
- Barrier certificates guarantee output trajectories are contained in the same set.
- Model validation \equiv set containment.
- Cannot distinguish between trajectory concentrations over same support.
New Nonlinear Model Validation Framework

Basic Idea: Excite both systems using random signals from a given distribution $\xi(u)$. If two systems are close, their output densities $\eta(y, t)$ and $\hat{\eta}(y, t)$ will have similar shape.
New Nonlinear Model Validation Framework

Basic Idea: Excite both systems using random signals from a given distribution $\xi(u)$. If two systems are close, their output densities $\eta(y, t)$ and $\hat{\eta}(y, t)$ will have similar shape.

Regions of high concentration \implies slow scale dynamics, invariant sets, equilibrium points.
New Nonlinear Model Validation Framework

Compute $\xi(u) \mapsto \eta(y,t)$ and $\xi(u) \mapsto \hat{\eta}(y,t)$.

$\xi(u) \overset{\mathcal{M}}{\mapsto} \eta(y,\cdot) \overset{\mathcal{\hat{M}}}{\mapsto} \hat{\eta}(y,\cdot)$

$\{d(\eta, \hat{\eta}) \leq \gamma \implies \text{valid}\}$

- Monte-Carlo ⇔ PDF estimation using histograms.
- Polynomial Chaos to propagate moments and estimate PDF using optimization.
- Stochastic Liouville or Fokker-Planck-Kolmogorov equation.
New Nonlinear Model Validation Framework

\[M \hat{M} \eta (y, \cdot) \hat{\eta} (y, \cdot) \xi (u) d(\eta, \hat{\eta}) \leq \gamma \implies \text{valid} \]

Compute \(\xi(u) \leftrightarrow \eta(y, t) \) and \(\xi(u) \leftrightarrow \hat{\eta}(y, t) \).

- **Monte-Carlo** \(\leftrightarrow \) PDF estimation using histograms.
New Nonlinear Model Validation Framework

\[\hat{M}(y, \cdot) \rightarrow \eta(y, \cdot) \rightarrow \hat{\eta}(y, \cdot) \] \[d(\eta, \hat{\eta}) \leq \gamma \implies \text{valid} \]

Compute \(\xi(u) \mapsto \eta(y, t) \) and \(\xi(u) \mapsto \hat{\eta}(y, t) \).

- **Monte-Carlo** ⇔ PDF estimation using histograms.
- **Polynomial Chaos** to propagate moments and estimate PDF using optimization.
New Nonlinear Model Validation Framework

\[M \hat{M} \eta(y, \cdot) \hat{\eta}(y, \cdot) \xi(u) d(\eta, \hat{\eta}) \leq \gamma \implies \text{valid} \]

Compute $\xi(u) \mapsto \eta(y, t)$ and $\xi(u) \mapsto \hat{\eta}(y, t)$.

- **Monte-Carlo** \leftrightarrow PDF estimation using histograms.
- **Polynomial Chaos** to propagate moments and estimate PDF using optimization.
- **Stochastic Liouville** or Fokker-Planck-Kolmogorov equation.
What is the right metric for PDF comparison?

(a) Entropy: \(H(\rho_1) = H(\rho_2) \).

(b) \(KL(\rho_1, \rho_0) = KL(\rho_2, \rho_0) \).

Suitable definition for \(d(\eta, \hat{\eta}) \) that computes shape difference between \(\eta, \hat{\eta} \).
What is the right metric for PDF comparison?

(c) Entropy: $H(\rho_1) = H(\rho_2)$.

(d) $KL(\rho_1, \rho_0) = KL(\rho_2, \rho_0)$.

Suitable definition for $d(\eta, \hat{\eta})$ that computes shape difference between $\eta, \hat{\eta}$.

- **Entropy** is not a shape metric.
- **Kulback Liebler Divergence** is not a shape difference metric. Requires same support.
What is the right metric for PDF comparison?

(e) Entropy: \(H(\rho_1) = H(\rho_2) \).

(f) \(KL(\rho_1, \rho_0) = KL(\rho_2, \rho_0) \).

Suitable definition for \(d(\eta, \hat{\eta}) \) that computes shape difference between \(\eta, \hat{\eta} \).

- **Entropy** is not a shape metric.
- **Kulback Liebler Divergence** is not a shape difference metric. Requires same support.
- Instead use **Wasserstein distance** \(2W_2 \). It is a shape difference metric. Has nice properties (unequal sampling, different support, etc).
Wasserstein Distance

Wasserstein distance between two densities $\rho_1(y_1)$ and $\rho_2(y_1)$ for $y_1, y_2 \in \mathbb{R}^n$ is defined as

$$2W_2 (\rho_1, \rho_2) := \left[\inf_{\rho \in \mathcal{F}(\rho_1, \rho_2)} \int_{\mathbb{R}^n \times \mathbb{R}^n} \| y_1 - y_2 \|^2 \, d\rho (y_1, y_2) \right]^{1/2}$$

$$= \left(\inf_{\rho \in \mathcal{F}(\rho_1, \rho_2)} \mathbb{E} \left[\| y_1 - y_2 \|^2 \right] \right)^{1/2}.$$

- $\mathcal{F}(\rho_1, \rho_2)$ is the set of all probability densities on $\mathbb{R}^n \times \mathbb{R}^n$ with first marginal as ρ_1 and second marginal as ρ_2.
- For multivariate Gaussian functions $\mathcal{N}(\mu_1, \Sigma_1)$ and $\mathcal{N}(\mu_2, \Sigma_2)$, $2W_2$ is given by,

$$2W_2 = \sqrt{\| \mu_1 - \mu_2 \|^2 + \text{tr} (\Sigma_1) + \text{tr} (\Sigma_2) - 2 \text{tr} \left(\left(\sqrt{\Sigma_1 \Sigma_2} \sqrt{\Sigma_1} \right)^{1/2} \right)}.$$
Wasserstein Distance via Linear Programming (LP)

- In general, $2W_2$ can be defined in terms of the Euclidean distance between samples of ρ_1 and ρ_2.
- Therefore, $2W_2$ can be computed by solving an LP defined over the samples of ρ_1 and ρ_2.
- LP equivalent to Monge-Kantorovich optimal transportation plan. Think of $2W_2$ as the minimum work required to convert one shape to the other.

$$2W_2(\rho_1, \rho_0) \neq 2W_2(\rho_2, \rho_0)$$
Simple Example

Consider the following nonlinear dynamical system

$$\ddot{x} = -ax - b \sin 2x - c\dot{x},$$

with $a = 0.1$, $b = 0.5$, and $c = 1$.
Simple Example

Consider the following nonlinear dynamical system

\[\ddot{x} = -ax - b \sin 2x - c \dot{x}, \]

with \(a = 0.1, b = 0.5, \) and \(c = 1. \)

- Five fixed points of the form \((x_1^*, 0), \) where \(b \sin 2x_1^* = -ax_1^*. \)
Simple Example

Consider the following nonlinear dynamical system

\[\ddot{x} = -ax - b \sin 2x - c\dot{x}, \]

with \(a = 0.1, \ b = 0.5, \) and \(c = 1. \)

- Five fixed points of the form \((x_1^*, 0)\), where \(b \sin 2x_1^* = -ax_1^*. \)
- Compare this with the linearized dynamics about \((0, 0)\).
Simple Example

Consider the following nonlinear dynamical system

$$\ddot{x} = -ax - b \sin 2x - c\dot{x},$$

with $a = 0.1$, $b = 0.5$, and $c = 1$.

- Five fixed points of the form $(x_1^*, 0)$, where $b \sin 2x_1^* = -ax_1^*$.
- Compare this with the linearized dynamics about $(0, 0)$.
- For this example, $u(t) = 0$. Both systems have same initial state distribution and $y = x$.
Simple Example

Consider the following nonlinear dynamical system

$$\ddot{x} = -ax - b\sin 2x - c\dot{x},$$

with $a = 0.1$, $b = 0.5$, and $c = 1$.

- Five fixed points of the form $(x^*_1, 0)$, where $b\sin 2x^*_1 = -ax^*_1$.
- Compare this with the linearized dynamics about $(0, 0)$.
- For this example, $u(t) = 0$. Both systems have same initial state distribution and $y = x$.
Consider two stable LTI systems with transfer function matrices \(G(j\omega) \) and \(\hat{G}(j\omega) \), excited by Gaussian white noise \(u(t) \sim \mathcal{N}(0, \text{diag} (\sigma_u^2)) \),

- **SISO and MISO:**

\[
2W_2^\infty(G, \hat{G}) = \sqrt{2\pi \sigma_u} \left| ||G||_2 - ||\hat{G}||_2 \right|
\]
Consider two stable LTI systems with transfer function matrices $G(j\omega)$ and $\hat{G}(j\omega)$, excited by Gaussian white noise $u(t) \sim \mathcal{N}(0, \text{diag}(\sigma_u^2))$,

- **SISO and MISO:**
 \[2W_2^\infty(G, \hat{G}) = \sqrt{2\pi} \sigma_u \left| \|G\|_2 - \|\hat{G}\|_2 \right| \]

- **MIMO**

 \[2W_2^\infty(G, \hat{G}) = \sqrt{2\pi} \sigma_u \left[\|G\|_2^2 + \|\hat{G}\|_2^2 - 2\text{tr} \left\{\mathcal{I}(G)^{1/2} \mathcal{I}(\hat{G}) \mathcal{I}(G)^{1/2}\right\} \right]^{1/2} \]

 where $\mathcal{I}(\cdot)$ is defined as

 \[\mathcal{I}(G) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} G^H(j\omega) G(j\omega) d\omega. \]

See CDC Paper "Frequency Domain Model Validation in Wasserstein Metric", A. Halder, R. Bhattacharya, for derivations.
Bounds for MIMO W^∞

$$\sigma_u \left\| \sqrt{\int_{-\infty}^{+\infty} G^H G d\omega} - \sqrt{\int_{-\infty}^{+\infty} \hat{G}^H \hat{G} d\omega} \right\|_F$$

$$W_{\infty}^{\text{SISO}} \quad W_{\infty}^{\text{MIMO}} \quad \sqrt{2\pi \sigma_u \sqrt{\|G\|_2^2 + \|\hat{G}\|_2^2}}$$
Sensitivity of W^∞ in Frequency Domain

- **Sensitive to scaling:** linear relative amplification \leadsto linear amplification of gap

- **Cannot discriminate between minimum and non-minimum phase systems:** e.g. $G_\pm = \frac{14s \pm \zeta}{s^2 + 5s + 6}$, $\zeta > 0$. Plot $W^\infty(G_+, G_-)$ vs. $\zeta \in (0, 40)$.

![Diagram showing sensitivity of W^∞ with examples of G_\pm and corresponding plots of magnitude and phase vs. ζ.]
Geometric Meaning of SISO W^∞ and ν-gap Metric

\[
\begin{align*}
\hat{G}(j\omega) & \quad \hat{\phi}(\hat{G}) \\
G(j\omega) & \quad \phi(G) \\
|G|_2 & \quad |\hat{G}|_2 \\
\kappa(\omega) & \quad \kappa_{\text{proj}}(\omega)
\end{align*}
\]
Geometric Meaning of SISO W^∞ and ν-gap Metric

\[G(j\omega) \]
\[\hat{G}(j\omega) \]
\[||G||^2 \]
\[||\hat{G}||^2 \]
\[\text{Re}(s) \]
\[\text{Im}(s) \]
\[\kappa(\omega) \]
\[\phi(\hat{G}) \]
\[\phi(G) \]
\[\kappa_{\text{proj}}(\omega) \]
Comparing SISO W_∞ and $\delta_\nu := \sup_\omega \kappa(\omega)$

- **Un-normalized comparison on Complex plane:**
 $$\sup_\omega \kappa^{\text{proj}}(\omega) \geq W_\infty$$

- **Normalized comparison on Riemann sphere:**
 $$\overline{W}_S \left(G, \hat{G} \right) = \frac{2}{\pi} \left| \arctan \| G \|_2 - \arctan \| \hat{G} \|_2 \right|$$, compare \overline{W}_S with δ_ν
Acknowledgements

Abhishek Halder
Graduate Student,
Department of Aerospace Engineering,
Texas A&M University.
Questions?