LU factorization with Panel Rank Revealing Pivoting and its Communication Avoiding version

Amal Khabou
Advisor: Laura Grigori

Université Paris Sud 11, INRIA Saclay France

SIAMPP12 February 17, 2012
Collaborators

- Jim Demmel, UC Berkeley
- Ming Gu, UC Berkeley
Plan

- Motivation: just work, less talk
- Communication Avoiding LU (CALU)
- LU with Panel Rank Revealing Pivoting (LU_PRRP)
- Communication Avoiding LU_PRRP (CALU_PRRP)
- Conclusions and future work
Let $M = \text{local/fast memory size}$, general lower bounds: [Ballard et al., 2011]

$$\text{# words moved} = \Omega \left(\frac{\# \text{flops}}{\sqrt{M}} \right)$$

$$\text{# messages} = \Omega \left(\frac{\# \text{flops}}{M^2} \right)$$
Lower bound for all direct linear algebra

Let $M =$ local/ fast memory size, general lower bounds: [Ballard et al., 2011]

$$\text{# words moved} = \Omega \left(\frac{\# \text{flops}}{\sqrt{M}} \right)$$

$$\text{# messages} = \Omega \left(\frac{\# \text{flops}}{M^2} \right)$$

Goal: reorganize linear algebra to:

- minimize # words moved
- minimize # messages
- conserve numerical stability (better: to improve)
- don’t increase the flop count (too much)
LU factorization (as in ScaLAPACK pdgetrf)

LU factorization on a $P = P_r \times P_c$ grid of processors
For $ib = 1$ to $n - 1$ step b $A^{(ib)} = A(ib : n, ib : n)$

1. Compute panel factorization
 - find pivot in each column, swap rows.
LU factorization (as in ScaLAPACK pdgetrf)

LU factorization on a $P = P_r \times P_c$ grid of processors
For $ib = 1$ to $n - 1$ step b $A^{(ib)} = A(ib : n, ib : n)$

1. Compute panel factorization # messages=$O(n \log_2 P_r)$
 - find pivot in each column, swap rows.
LU factorization (as in ScaLAPACK pdgetrf)

LU factorization on a $P = P_r \times P_c$ grid of processors
For $ib = 1$ to $n - 1$ step b \[A^{(ib)} = A(ib : n, ib : n) \]

1. Compute panel factorization \# messages$= O(n \log_2 P_r)$
 - find pivot in each column, swap rows.

2. Apply all row permutations
 - broadcast pivot information along the rows
 - swap rows at left and right.
LU factorization (as in ScaLAPACK pdgetrf)

LU factorization on a $P = P_r \times P_c$ grid of processors

For $ib = 1$ to $n - 1$ step b
$A^{(ib)} = A(ib : n, ib : n)$

1. Compute panel factorization
 # messages=$O(n \log_2 P_r)$
 - find pivot in each column, swap rows.

2. Apply all row permutations
 # messages=$O(n/b(\log_2 P_r + \log_2 P_c))$
 - broadcast pivot information along the rows
 - swap rows at left and right.
LU factorization (as in ScaLAPACK pdgetrf)

LU factorization on a \(P = P_r \times P_c \) grid of processors
For \(ib = 1 \) to \(n - 1 \) step \(b \) \(A^{(ib)} = A(ib : n, ib : n) \)

1. Compute panel factorization # messages=\(O(n \log_2 P_r) \)
 - find pivot in each column, swap rows.

2. Apply all row permutations # messages=\(O(n/b(\log_2 P_r + \log_2 P_c)) \)
 - broadcast pivot information along the rows
 - swap rows at left and right.

3. Compute block row of \(U \)
 - broadcast right diagonal block of \(L \) of current panel.
LU factorization (as in ScaLAPACK pdgetrf)

LU factorization on a $P = P_r \times P_c$ grid of processors
For $ib = 1$ to $n - 1$ step b $A^{(ib)} = A(ib : n, ib : n)$

1. Compute panel factorization # messages=$O(n \log_2 P_r)$
 - find pivot in each column, swap rows.

2. Apply all row permutations # messages=$O(n/b(\log_2 P_r + \log_2 P_c))$
 - broadcast pivot information along the rows
 - swap rows at left and right.

3. Compute block row of U # messages=$O(n/b \log_2 P_c)$
 - broadcast right diagonal block of L of current panel.
LU factorization (as in ScaLAPACK pdgetrf)

LU factorization on a $P = P_r \times P_c$ grid of processors

For $ib = 1$ to $n - 1$ step b

$A^{(ib)} = A(ib : n, ib : n)$

1. **Compute panel factorization**
 # messages=$O(n \log_2 P_r)$
 - find pivot in each column, swap rows.

2. **Apply all row permutations**
 # messages=$O(n/b(\log_2 P_r + \log_2 P_c))$
 - broadcast pivot information along the rows
 - swap rows at left and right.

3. **Compute block row of U**
 # messages=$O(n/b \log_2 P_c)$
 - broadcast right diagonal block of L of current panel.

4. **Update trailing matrix**
 - broadcast right block column of L.
 - broadcast down block row of U.
LU factorization on a $P = P_r \times P_c$ grid of processors
For $ib = 1$ to $n - 1$ step b \quad $A^{(ib)} = A(ib : n, ib : n)$

1. Compute panel factorization \quad # messages=$O(n \log_2 P_r)$
 - find pivot in each column, swap rows.

2. Apply all row permutations \quad # messages=$O(n/b(\log_2 P_r + \log_2 P_c))$
 - broadcast pivot information along the rows
 - swap rows at left and right.

3. Compute block row of U \quad # messages=$O(n/b \log_2 P_c)$
 - broadcast right diagonal block of L of current panel.

4. Update trailing matrix \quad # messages=$O(n/b(\log_2 P_r + \log_2 P_c))$
 - broadcast right block column of L.
 - broadcast down block row of U.
LU factorization (ScaLAPACK) upper bounds

2D algorithm \(P = P_r \times P_c \), \(M = O \left(\frac{n^2}{P} \right) \), Lower bounds:

[Ballard et al., 2011]

\[
\begin{align*}
\# \text{ words moved} & = \Omega \left(\frac{n^2}{\sqrt{P}} \right) \\
\# \text{ messages} & = \Omega \left(\sqrt{P} \right)
\end{align*}
\]
LU factorization (ScaLAPACK) upper bounds

2D algorithm $P = P_r \times P_c$, $M = O \left(\frac{n^2}{P} \right)$, Lower bounds: [Ballard et al., 2011]

- # words moved $= \Omega \left(\frac{n^2}{\sqrt{P}} \right)$
- # messages $= \Omega \left(\sqrt{P} \right)$

LU with partial pivoting (ScaLAPACK) $P = \sqrt{P} \times \sqrt{P}$, $b = \frac{n}{\sqrt{P}}$ (upper bound):

<table>
<thead>
<tr>
<th>Factor exceeding lower bounds for #words moved</th>
<th>Factor exceeding lower bounds for #messages</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\log P$</td>
<td>$\left(\frac{n}{\sqrt{P}} \right) \log P$</td>
</tr>
</tbody>
</table>
LU factorization (ScaLAPACK) upper bounds

2D algorithm $P = P_r \times P_c$, $M = O\left(\frac{n^2}{P}\right)$, Lower bounds:

[Ballard et al., 2011]

- # words moved $= \Omega\left(\frac{n^2}{\sqrt{P}}\right)$
- # messages $= \Omega\left(\sqrt{P}\right)$

LU with partial pivoting (ScaLAPACK) $P = \sqrt{P} \times \sqrt{P}$, $b = \frac{n}{\sqrt{P}}$ (upper bound):

<table>
<thead>
<tr>
<th>Factor exceeding lower bounds for</th>
<th>Factor exceeding lower bounds for</th>
</tr>
</thead>
<tbody>
<tr>
<td>#words moved</td>
<td>#messages</td>
</tr>
<tr>
<td>$\log P$</td>
<td>$\left(\frac{n}{\sqrt{P}}\right) \log P$</td>
</tr>
</tbody>
</table>

The lower bounds are attained by CALU: LU factorization with tournament pivoting [Grigori et al., 2011]
Consider the growth factor [Wilkinson, 1961]

\[gw = \frac{\max_{i,j,k} |a_{i,j}^{(k)}|}{\max_{i,j} |a_{i,j}|} \]

where \(a_{i,j}^{(k)} \) denotes the entry in position \((i, j)\) obtained after \(k\) steps of elimination.
Consider the growth factor [Wilkinson, 1961]

\[
g_W = \frac{\max_{i,j,k} |a_{i,j}^{(k)}|}{\max_{i,j} |a_{i,j}|}
\]

where \(a_{i,j}^{(k)}\) denotes the entry in position \((i, j)\) obtained after \(k\) steps of elimination.

Worst case growth factor:

- Partial pivoting: \(g_W \leq 2^{n-1}\)
Consider the growth factor \[\text{[Wilkinson, 1961]}\]

\[
g_W = \frac{\max_{i,j,k} |a_{i,j}^{(k)}|}{\max_{i,j} |a_{i,j}|}
\]

where \(a_{i,j}^{(k)}\) denotes the entry in position \((i, j)\) obtained after \(k\) steps of elimination.

Worst case growth factor:

- Partial pivoting: \(g_W \leq 2^{n-1}\)

- For partial pivoting, the upper bound is attained for the Wilkinson matrix.
Consider a block algorithm that factors an $n \times n$ matrix A by traversing panels of b columns.

\[
A = \begin{bmatrix}
 b & n-b \\
 \underbrace{A_{11}} & \underbrace{A_{12}} \\
 A_{21} & A_{22}
\end{bmatrix}
\]

where, \[W = \begin{bmatrix}
 A_{11} \\
 A_{21}
\end{bmatrix} \]
Consider a block algorithm that factors an $n \times n$ matrix A by traversing panels of b columns.

$$A = \begin{bmatrix} b & n-b \\ \overbrace{A_{11}} & \overbrace{A_{12}} \\ \underbrace{A_{21}} & \underbrace{A_{22}} \end{bmatrix}$$

where, $W = \begin{bmatrix} A_{11} \\ A_{21} \end{bmatrix}$

For each panel W
CALU: Tournament pivoting - the overall idea

Consider a block algorithm that factors an \(n \times n \) matrix \(A \) by traversing panels of \(b \) columns.

\[
A = \begin{bmatrix}
 b & n-b \\
 A_{11} & A_{12} \\
 A_{21} & A_{22}
\end{bmatrix}
\]

where, \(W = \begin{bmatrix} A_{11} \\ A_{21} \end{bmatrix} \)

For each panel \(W \)

- Find at low communication cost good pivots for the LU factorization of the panel \(W \), return a permutation matrix \(\Pi \) (preprocessing step).
Consider a block algorithm that factors an $n \times n$ matrix A by traversing panels of b columns.

$$A = \begin{bmatrix} b & n-b \\ \overbrace{A_{11}} & \overbrace{A_{12}} \\ \overbrace{A_{21}} & \overbrace{A_{22}} \end{bmatrix} \quad \text{where,} \quad W = \begin{bmatrix} A_{11} \\ A_{21} \end{bmatrix}$$

For each panel W

- Find at low communication cost good pivots for the LU factorization of the panel W, return a permutation matrix Π (preprocessing step).
- Apply Π to the input matrix A.
Consider a block algorithm that factors an $n \times n$ matrix A by traversing panels of b columns.

$$A = \begin{bmatrix}
 b & n-b \\
 \begin{bmatrix} A_{11} & A_{12} \\
 A_{21} & A_{22} \end{bmatrix} & \begin{bmatrix} A_{11} \\
 A_{21} \end{bmatrix}
\end{bmatrix}$$

where, $W = \begin{bmatrix} A_{11} \\
 A_{21} \end{bmatrix}$

For each panel W

- Find at low communication cost good pivots for the LU factorization of the panel W, return a permutation matrix Π (preprocessing step).
- Apply Π to the input matrix A.
- Compute LU with no pivoting of ΠW, update trailing matrix.
Consider a block algorithm that factors an $n \times n$ matrix A by traversing panels of b columns.

$$A = \begin{bmatrix} b & n-b \\ A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \quad \text{where,} \quad W = \begin{bmatrix} A_{11} \\ A_{21} \end{bmatrix}$$

For each panel W

- Find at low communication cost good pivots for the LU factorization of the panel W, return a permutation matrix Π (preprocessing step).
- Apply Π to the input matrix A.
- Compute LU with no pivoting of ΠW, update trailing matrix.

benefit: b times fewer messages overall for the panel factorization - faster
Stability of CALU

Worst case analysis of growth factor for a reduction tree of height H : CALU vs GEPP

<table>
<thead>
<tr>
<th></th>
<th>matrix of size $m \times (b + 1)$</th>
<th>GEPP</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSLU(b,H)</td>
<td>$2^{b(H+1)}$</td>
<td>2^b</td>
</tr>
<tr>
<td>g_W upper bound</td>
<td>$2^{n(H+1)-1}$</td>
<td>2^{n-1}</td>
</tr>
</tbody>
</table>

- The growth factor upper bound of CALU is worse than GEPP, but CALU is still stable in practice. [Grigori et al., 2011]
Motivation

- CALU does an optimal amount of communication.
- CALU is as stable as GEPP in practice. [Grigori et al., 2011]
- CALU is worse than GEPP in terms of theoretical growth factor upper bound.

- Our goal: to improve the stability of both GEPP and CALU.
To improve the stability of LU:

- Pivoting strategy based on the Strong RRQR factorization

\[A^T \Pi = QR = Q \begin{bmatrix} R_{11} & R_{12} \\ R_{21} & R_{22} \end{bmatrix} \]
To improve the stability of LU:

- Pivoting strategy based on the Strong RRQR factorization

\[A^T \Pi = QR = Q \begin{bmatrix} R_{11} & R_{12} \\ R_{22} \end{bmatrix} \]

This factorization satisfies three conditions [Gu and Eisenstat, 1996]:

- every singular value of \(R_{11} \) is large.
- every singular value of \(R_{22} \) is small.
- every element of \(R_{11}^{-1} R_{12} \) could be bounded by a given threshold \(\tau \).
Result: $W^T \Pi = QR$ with $\| R_{11}^{-1} R_{12} \|_{max} \leq \tau$

Compute $W^T \Pi = QR$ \text{ RRQR with column pivoting } ;

\textbf{while} there exist \textit{i} and \textit{j} such that $| R_{11}^{-1} R_{12} |_{ij} > \tau$ \textbf{do}

\hspace{1em} Compute the QR factorization of $R \Pi_{ij}$ (QR updates) ;

\textbf{end}

\textbf{Algorithm:} Strong RRQR of the panel W
Strong Rank Revealing QR

Result: \(W^T \Pi = QR \) with \(\| R_{11}^{-1} R_{12} \|_{max} \leq \tau \)

Compute \(W^T \Pi = QR \) RRQR with column pivoting;

while there exist \(i \) and \(j \) such that \(|R_{11}^{-1} R_{12}_{ij}| > \tau \) **do**

Compute the QR factorization of \(R \Pi_{ij} \) (QR updates);

end

Algorithm: Strong RRQR of the panel \(W \)

- After each swap the determinant of \(R_{11} \) increases by at least \(\tau \).
- There are only a finite number of permutations.
- Strong RRQR does \(O(mb^2) \) flops in the worst case.
Consider a block algorithm that factors an $n \times n$ matrix A by traversing panels of b columns.

\[
A = \begin{bmatrix}
 \underbrace{b} & \underbrace{n-b} \\
 \underbrace{A_{11}} & \underbrace{A_{12}} \\
 \underbrace{A_{21}} & \underbrace{A_{22}}
\end{bmatrix}
\]

where, $W = \begin{bmatrix} A_{11} \\ A_{21} \end{bmatrix}$
Consider a block algorithm that factors an $n \times n$ matrix A by traversing panels of b columns.

\[
A = \begin{bmatrix}
\text{b} & \text{n} - \text{b} \\
\text{A}_{11} & \text{A}_{12} \\
\text{A}_{21} & \text{A}_{22}
\end{bmatrix}
\]

where, $W = \begin{bmatrix} A_{11} \\ A_{21} \end{bmatrix}$

For each panel W
Consider a block algorithm that factors an $n \times n$ matrix A by traversing panels of b columns.

$$A = \begin{bmatrix} b & n-b \\ \widehat{A_{11}} & \widehat{A_{12}} \\ \widehat{A_{21}} & \widehat{A_{22}} \end{bmatrix} \text{ where, } W = \begin{bmatrix} A_{11} \\ A_{21} \end{bmatrix}$$

For each panel W

- perform the Strong RRQR factorization of the transpose of the panel W, find a permutation matrix Π

$$W^T \Pi = Q \begin{bmatrix} R_{11} & R_{12} \end{bmatrix} \text{ such as } \|L_{21}\| = \|R_{12}^T(R_{11}^{-1})^T\| \leq \tau$$
Consider a block algorithm that factors an $n \times n$ matrix A by traversing panels of b columns.

$$A = \begin{bmatrix} b & n-b \\ \widehat{A_{11}} & \widehat{A_{12}} \\ \widehat{A_{21}} & \widehat{A_{22}} \end{bmatrix} \text{ where, } W = \begin{bmatrix} A_{11} \\ A_{21} \end{bmatrix}$$

For each panel W

- perform the Strong RRQR factorization of the transpose of the panel W, find a permutation matrix Π

$$W^T \Pi = Q \begin{bmatrix} R_{11} & R_{12} \end{bmatrix} \text{ such as } \|L_{21}\| = \|R_{12}^T (R_{11}^{-1})^T \| \leq \tau$$

- Apply Π^T to the input matrix A.

13
Consider a block algorithm that factors an $n \times n$ matrix A by traversing panels of b columns.

$$A = \begin{bmatrix}
\begin{array}{c}
\sum_{i=1}^{b} A_{11} \\
\sum_{i=1}^{n-b} A_{12} \\
A_{21} \\
A_{22}
\end{array}
\end{bmatrix} \text{ where, } W = \begin{bmatrix}
A_{11} \\
A_{21}
\end{bmatrix}$$

For each panel W

- perform the Strong RRQR factorization of the transpose of the panel W, find a permutation matrix Π

$$W^T \Pi = Q \begin{bmatrix}
R_{11} & R_{12}
\end{bmatrix} \text{ such as } \|L_{21}\| = \|R_{12}(R_{11}^{-1})^T\| \leq \tau$$

- Apply Π^T to the input matrix A.
- Update the trailing matrix as follows.

$$\hat{A} = \Pi^T A = \begin{bmatrix}
I_b \\
L_{21} \\
I_{m-b}
\end{bmatrix} . \begin{bmatrix}
\hat{A}_{11} & \hat{A}_{12} \\
\hat{A}_{22}
\end{bmatrix}$$

where

$$\hat{A}_{22}^s = \hat{A}_{22} - L_{21} \hat{A}_{12}$$
Perform an additional GEPP on the $b \times b$ diagonal block \hat{A}_{11}.
Perform an additional GEPP on the $b \times b$ diagonal block \hat{A}_{11}.

Update the corresponding trailing matrix \hat{A}_{12}.

$$
\hat{A} = \begin{bmatrix}
I_b \\
L_{21} & I_{m-b}
\end{bmatrix} \cdot \begin{bmatrix}
L_{11} & \\
& I_{m-b}
\end{bmatrix} \cdot \begin{bmatrix}
U_{11} & U_{12} \\
& \hat{A}_{s22}
\end{bmatrix}
$$
Perform an additional GEPP on the $b \times b$ diagonal block \hat{A}_{11}.

Update the corresponding trailing matrix \hat{A}_{12}.

\[
\hat{A} = \begin{bmatrix}
I_b \\
L_{21} & I_{m-b}
\end{bmatrix} \cdot \begin{bmatrix}
L_{11} & \\
& I_{m-b}
\end{bmatrix} \cdot \begin{bmatrix}
U_{11} & U_{12} \\
& \hat{A}_{22}^s
\end{bmatrix}
\]

LU_PRRP has the same memory requirements as the standard LU decomposition.

The total cost is about $\frac{2}{3} n^3 + O(n^2 b)$ flops.

Is only $O(n^2 b)$ flops more than GEPP.
Worst case analysis of the growth factor: LU_PRRP vs GEPP.

<table>
<thead>
<tr>
<th></th>
<th>LU_PRRP</th>
<th>GEPP</th>
</tr>
</thead>
<tbody>
<tr>
<td>g_W upper bound</td>
<td>$1 + \tau b$</td>
<td>2^b</td>
</tr>
<tr>
<td>matrix of size $m \times (b + 1)$</td>
<td>LU_PRRP</td>
<td>GEPP</td>
</tr>
<tr>
<td>g_W upper bound</td>
<td>$(1 + \tau b)^n/b$</td>
<td>2^{n-1}</td>
</tr>
</tbody>
</table>

LU_PRRP is more stable than GEPP in terms of theoretical growth factor upper bound.
The upper bound for different panel sizes with a parameter $\tau = 2$

For the different panel sizes, LU_PRRP is more stable than GEPP.

<table>
<thead>
<tr>
<th>b</th>
<th>g_W</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>$(1.425)^n$</td>
</tr>
<tr>
<td>16</td>
<td>$(1.244)^n$</td>
</tr>
<tr>
<td>32</td>
<td>$(1.139)^n$</td>
</tr>
<tr>
<td>64</td>
<td>$(1.078)^n$</td>
</tr>
<tr>
<td>128</td>
<td>$(1.044)^n$</td>
</tr>
</tbody>
</table>
LU_PRRP is more resistant to pathological matrices on which GEPP fails:
LU_PRRP is more resistant to pathological matrices on which GEPP fails:

- the Wilkinson matrix.
LU_PRRP is more resistant to pathological matrices on which GEPP fails:

- the Wilkinson matrix.

| n | b | g_W | $||U||_1$ | $||U^{-1}||_1$ | $||L||_1$ | $||L^{-1}||_1$ | $\frac{||PA-LU||_F}{||A||_F}$ |
|------|---|-------|---------|---------------|---------|-------------|------------------|
| 2048 | 128 | 1 | 1.02e+03 | 6.09e+00 | 1 | 1.95e+00 | 4.25e-20 |
| | 64 | 1 | 1.02e+03 | 6.09e+00 | 1 | 1.95e+00 | 5.29e-20 |
| | 32 | 1 | 1.02e+03 | 6.09e+00 | 1 | 1.95e+00 | 8.63e-20 |
| | 16 | 1 | 1.02e+03 | 6.09e+00 | 1 | 1.95e+00 | 1.13e-19 |
| | 8 | 1 | 1.02e+03 | 6.09e+00 | 1 | 1.95e+00 | 1.57e-19 |
LU_PRRP is more resistant to pathological matrices on which GEPP fails:

- the Wilkinson matrix.

| n | b | g_W | $||U||_1$ | $||U^{-1}||_1$ | $||L||_1$ | $||L^{-1}||_1$ | $||PA-LU||_F$ |
|-----|---|-------|-----------|----------------|-----------|----------------|---------------|
| 2048| 128 | 1 | 1.02e+03 | 6.09e+00 | 1 | 1.95e+00 | 4.25e-20 |
| | 64 | 1 | 1.02e+03 | 6.09e+00 | 1 | 1.95e+00 | 5.29e-20 |
| | 32 | 1 | 1.02e+03 | 6.09e+00 | 1 | 1.95e+00 | 8.63e-20 |
| | 16 | 1 | 1.02e+03 | 6.09e+00 | 1 | 1.95e+00 | 1.13e-19 |
| | 8 | 1 | 1.02e+03 | 6.09e+00 | 1 | 1.95e+00 | 1.57e-19 |

- the Foster matrix: a concrete physical example that arises from using the quadrature method to solve a certain Volterra integral equation [Foster, 1994].
Stability of LU_PRRP (4/4)

| n | b | g_W | $||U||_1$ | $||U^{-1}||_1$ | $||L||_1$ | $||L^{-1}||_1$ | $||PA-LU||_F/||A||_F$ |
|----|----|-------|-----------|---------------|---------|---------------|-----------------|
| 2048 | 128 | 2.66 | 1.28e+03 | 1.87e+00 | 1.92e+03 | 1.92e+03 | 4.67e-16 |
| | 64 | 2.66 | 1.19e+03 | 1.87e+00 | 1.98e+03 | 1.79e+03 | 2.64e-16 |
| | 32 | 2.66 | 4.33e+01 | 1.87e+00 | 2.01e+03 | 3.30e+01 | 2.83e-16 |
| | 16 | 2.66 | 1.35e+03 | 1.87e+00 | 2.03e+03 | 2.03e+00 | 2.38e-16 |
| | 8 | 2.66 | 1.35e+03 | 1.87e+00 | 2.04e+03 | 2.02e+00 | 5.36e-17 |
the Wright matrix: two-point boundary value problems, the multiple shooting algorithm [WRIGHT, 1993].
the Wright matrix: two-point boundary value problems, the multiple shooting algorithm [WRIGHT, 1993].

| n | b | g_W | $||U||_1$ | $||U^{-1}||_1$ | $||L||_1$ | $||L^{-1}||_1$ | $||PA-LU||_F/||A||_F$ |
|----|----|-------|----------|----------------|----------|----------------|------------------------|
| 2048 | 128 | 2.66 | 1.28e+03 | 1.87e+00 | 1.92e+03 | 1.92e+03 | 4.67e-16 |
| | 64 | 2.66 | 1.19e+03 | 1.87e+00 | 1.98e+03 | 1.79e+03 | 2.64e-16 |
| | 32 | 2.66 | 4.33e+01 | 1.87e+00 | 2.01e+03 | 3.30e+01 | 2.83e-16 |
| | 16 | 2.66 | 1.35e+03 | 1.87e+00 | 2.03e+03 | 2.03e+00 | 2.38e-16 |
| | 8 | 2.66 | 1.35e+03 | 1.87e+00 | 2.04e+03 | 2.02e+00 | 5.36e-17 |

| n | b | g_W | $||U||_1$ | $||U^{-1}||_1$ | $||L||_1$ | $||L^{-1}||_1$ | $||PA-LU||_F/||A||_F$ |
|----|----|-------|----------|----------------|----------|----------------|------------------------|
| 2048 | 128 | 1 | 3.25e+00 | 8.00e+00 | 2.00e+00 | 2.00e+00 | 4.08e-17 |
| | 64 | 1 | 3.25e+00 | 8.00e+00 | 2.00e+00 | 2.00e+00 | 4.08e-17 |
| | 32 | 1 | 3.25e+00 | 8.00e+00 | 2.05e+00 | 2.07e+00 | 6.65e-17 |
| | 16 | 1 | 3.25e+00 | 8.00e+00 | 2.32e+00 | 2.44e+00 | 1.04e-16 |
| | 8 | 1 | 3.40e+00 | 8.00e+00 | 2.62e+00 | 3.65e+00 | 1.26e-16 |
Consider a block algorithm that factors an $n \times n$ matrix A by traversing panels of b columns.

\[
A = \begin{bmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{bmatrix}
\]

where,

\[
W = \begin{bmatrix}
A_{11} \\
A_{21}
\end{bmatrix}
\]
Consider a block algorithm that factors an $n \times n$ matrix A by traversing panels of b columns.

$$A = \begin{bmatrix} b & n-b \\ A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$$

where, $W = \begin{bmatrix} A_{11} \\ A_{21} \end{bmatrix}$

For each panel W
Consider a block algorithm that factors an $n \times n$ matrix A by traversing panels of b columns.

$$A = \begin{bmatrix} b & n-b \\ \underbrace{A_{11}} & \underbrace{A_{12}} \\ \underbrace{A_{21}} & A_{22} \end{bmatrix}$$

where, $W = \begin{bmatrix} A_{11} \\ A_{21} \end{bmatrix}$

For each panel W

- Find at low communication cost b pivot rows for the QR factorization of W^T, return a permutation matrix Π (preprocessing step).
Consider a block algorithm that factors an $n \times n$ matrix A by traversing panels of b columns.

$$A = \begin{bmatrix} b & n-b \\ A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \quad \text{where}, \quad W = \begin{bmatrix} A_{11} \\ A_{21} \end{bmatrix}$$

For each panel W

- Find at low communication cost b pivot rows for the QR factorization of W^T, return a permutation matrix Π (preprocessing step).
- Apply Π^T to the input matrix A.
Consider a block algorithm that factors an \(n \times n \) matrix \(A \) by traversing panels of \(b \) columns.

\[
A = \begin{bmatrix}
 b \\
 \overbrace{A_{11}}^{n-b} \\
 A_{21} \\
 A_{22}
\end{bmatrix}
\]

where, \(W = \begin{bmatrix} A_{11} \\ A_{21} \end{bmatrix} \)

For each panel \(W \)

- Find at low communication cost \(b \) pivot rows for the QR factorization of \(W^T \), return a permutation matrix \(\Pi \) (preprocessing step).
- Apply \(\Pi^T \) to the input matrix \(A \).
- Compute QR with no pivoting of \(W^T \Pi \), update trailing matrix as for the LU_PRRP algorithm.
Consider a block algorithm that factors an $n \times n$ matrix A by traversing panels of b columns.

$$A = \begin{bmatrix} b & \overbrace{n-b}^{n-b} \\ \underbrace{A_{11}}_{A_{11}} & \underbrace{A_{12}}_{A_{12}} \\ A_{21} & A_{22} \end{bmatrix} \text{ where, } W = \begin{bmatrix} A_{11} \\ A_{21} \end{bmatrix}$$

For each panel W
- Find at low communication cost b pivot rows for the QR factorization of W^T, return a permutation matrix Π (preprocessing step).
- Apply Π^T to the input matrix A.
- Compute QR with no pivoting of $W^T \Pi$, update trailing matrix as for the LU_PRRP algorithm.
- Perform GEPP on the $b \times b$ diagonal block and update the corresponding trailing matrix (to obtain the LU decomposition).
Consider the panel W, partitioned over $P = 4$ processors as

$$W = \begin{pmatrix} A_{00} \\ A_{10} \\ A_{20} \\ A_{30} \end{pmatrix},$$
Consider the panel W, partitioned over $P = 4$ processors as

$$W = \begin{pmatrix} A_{00} \\ A_{10} \\ A_{20} \\ A_{30} \end{pmatrix},$$

The panel factorization uses the following binary tree:

```graph
A_{00} -> A_{01} -> A_{02}
|      |
A_{10} | A_{11} |
|      |
A_{20} | A_{21} |
|      |
A_{30} | A_{31} |
```

Compute Strong RRQR factorization of the transpose of each block A_i of the panel W, find a permutation Π:

$$A_T^{\Pi_0} = \begin{pmatrix} Q_{00} & R_{00} \\ Q_{10} & R_{10} \\ Q_{20} & R_{20} \\ Q_{30} & R_{30} \end{pmatrix}$$

Perform $\log P$ times Strong RRQR factorizations of $2 \times b$ blocks, find permutations Π_1 and Π_2:

$$A_T^{\Pi_{01}} = \begin{pmatrix} (A_T^{\Pi_0})(:,1:b); (A_T^{\Pi_1})(:,1:b) \end{pmatrix}^T$$

$$A_T^{\Pi_{11}} = \begin{pmatrix} (A_T^{\Pi_2})(:,1:b); (A_T^{\Pi_1})(:,1:b) \end{pmatrix}^T$$

$$A_T^{\Pi_{02}} = \begin{pmatrix} (A_T^{\Pi_0})(:,1:b); (A_T^{\Pi_2})(:,1:b) \end{pmatrix}^T$$

$$A_T^{\Pi_{02}} = \begin{pmatrix} (A_T^{\Pi_0})(:,1:b); (A_T^{\Pi_2})(:,1:b) \end{pmatrix}^T$$
Consider the panel W, partitioned over $P = 4$ processors as

$$W = \begin{pmatrix} A_{00} \\ A_{10} \\ A_{20} \\ A_{30} \end{pmatrix},$$

The panel factorization uses the following binary tree:

1. Compute Strong RRQR factorization of the transpose of each block A_{i0} of the panel W, find a permutation Π_0

$$\begin{bmatrix} A_{00}^T \Pi_{00} \\ A_{10}^T \Pi_{10} \\ A_{20}^T \Pi_{20} \\ A_{30}^T \Pi_{30} \end{bmatrix} = \begin{bmatrix} Q_{00} R_{00} \\ Q_{10} R_{10} \\ Q_{20} R_{20} \\ Q_{30} R_{30} \end{bmatrix}$$
CALU_PRRP: preprocessing step

Consider the panel \(W \), partitioned over \(P = 4 \) processors as

\[
W = \begin{pmatrix}
A_{00} \\
A_{10} \\
A_{20} \\
A_{30}
\end{pmatrix},
\]

The panel factorization uses the following binary tree:

1. Compute Strong RRQR factorization of the transpose of each block \(A_{i0} \) of the panel \(W \), find a permutation \(\Pi_0 \)

\[
\begin{bmatrix}
A^T_{00} \Pi_0 \\
A^T_{10} \Pi_1 \\
A^T_{20} \Pi_2 \\
A^T_{30} \Pi_3
\end{bmatrix} = \begin{bmatrix}
Q_{00} R_{00} \\
Q_{10} R_{10} \\
Q_{20} R_{20} \\
Q_{30} R_{30}
\end{bmatrix}
\]

2. Perform log \(P \) times Strong RRQR factorizations of \(2b \times b \) blocks, find permutations \(\Pi_1 \) and \(\Pi_2 \)

\[
A^T_{01} \Pi_1 = \begin{bmatrix}
(A^T_{00} \Pi_0)(::, 1:b); (A^T_{10} \Pi_{10})(::, 1:b)
\end{bmatrix}^T \Pi_{01} = Q_{01} R_{01}
\]

\[
A^T_{11} \Pi_1 = \begin{bmatrix}
(A^T_{20} \Pi_2)(::, 1:b); (A^T_{30} \Pi_3)(::, 1:b)
\end{bmatrix}^T \Pi_{11} = Q_{11} R_{11}
\]

\[
A^T_{02} \Pi_2 = \begin{bmatrix}
(A^T_{01} \Pi_1)(::, 1:b); (A^T_{11} \Pi_{11})(::, 1:b)
\end{bmatrix}^T \Pi_{02} = Q_{02} R_{02}
\]
Stability of CALU_PRRP

Worst case analysis of the growth factor for a reduction tree of height H : CALU_PRRP vs CALU.

<table>
<thead>
<tr>
<th>g_W upper bound</th>
<th>matrix of size $m \times (b + 1)$</th>
<th>$TSLU_PRRP(b,H)$</th>
<th>$TSLU(b,H)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1 + $\tau b)^{H+1}$</td>
<td>$2^{b(H+1)}$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>g_W upper bound</th>
<th>matrix of size $m \times n$</th>
<th>$CALU_PRRP$</th>
<th>$CALU$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(1 + \tau b)^{\frac{n}{b}(H+1)-1}$</td>
<td>$2^{n(H+1)-1}$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Stability of CALU_PRRP

Worst case analysis of the growth factor for a reduction tree of height H:

CALU_PRRP vs CALU.

<table>
<thead>
<tr>
<th></th>
<th>matrix of size $m \times (b + 1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSLU_PRRP(b,H)</td>
<td>$(1 + \tau b)^{H+1}$</td>
</tr>
<tr>
<td>TSLU(b,H)</td>
<td>$2^{b(H+1)}$</td>
</tr>
</tbody>
</table>

| g_{W} upper bound | $\left(1 + \frac{\tau b}{b}\right)^{\frac{n}{b}(H+1)-1}$ |
| | $2^{n(H+1)-1}$ |

- CALU_PRRP is more stable than CALU in terms of theoretical growth factor upper bound.
- For the binary reduction tree, it is more stable than GEPP when $b \geq \log(\tau b) \log P$ ($b = \frac{n}{\sqrt{P}}$)
CALU_PRRP: experimental results

- CALU_PRRP is as stable as GEPP in practice [Khabou et al., 2012].
- QR with column pivoting is sufficient to attain the bound τ in practice.
Overall summary

- **LU_PRRP**
 - more stable than GEPP in terms of growth factor upper bound.
 - more resistant to pathological matrices.
 - same memory requirements as the standard LU.

- **CALU_PRRP**
 - an optimal amount of communication at the cost of redundant computation.
 - more stable than CALU in terms of growth factor upper bound.
 - more stable than GEPP in terms of growth factor upper bound under certain conditions.
Future work

- Estimating the performance of CALU_PRRP on parallel machines based on multicore processors, and comparing it with the performance of CALU.
- Design of a communication avoiding algorithm that has smaller bounds on the growth factor than that of GEPP in general.
Minimizing communication in linear algebra.
SIMAX, 32:866–90.

Foster, L. V. (1994).
Gaussian Elimination with Partial Pivoting Can Fail in Practice.

CALU: A communication optimal LU factorization algorithm.
SIAM Journal on Matrix Analysis and Applications.

Efficient Algorithms For Computing A Strong Rank Reaviling QR Factorization.

LU factorization with panel rank revealing pivoting and its communication avoiding version.
Technical Report UCB/EECS-2012-15, EECS Department, University of California, Berkeley.

Error analysis of direct methods of matrix inversion.

A collection of problems for which gaussian elimination with partial pivoting is unstable.
SIAM J. SCI. STATIST. COMPUT., 14:231–238.