Communication Issues in Designing a Parallel Out-of-Core Multifrontal Linear Solver

Haim Avron and Anshul Gupta

IBM T. J. Watson Research Center

SIAM PP’12, February 2012
Out-of-Core Solvers

Solve $Ax = b$; A is large, sparse and SPD; Shared memory platform
- Direct methods are robust and generally efficient
 ... but they do not scale well in terms of memory
- Problems are growing larger,
 and storage requirements grow more rapidly.
- Example: An $n^{1/3} \times n^{1/3} \times n^{1/3}$ grid is has $O(n)$ non-zeros
 ... but $O(n^{4/3})$ non-zeros in L (optimal reordering)
- Some large problems may fit memory in sequential run
 ... but run out of memory when multithreaded.
- The out-of-core approach: keep some data on disk.
Why Parallel?

This is SIAM Parallel Processing...
Transferring data between disk and memory is communication between slow and fast memories, like in cache hierarchy.

However there are some important differences from cache hierarchy:

1. In cache hierarchy: very small fast memory (compared to peak memory use of the algorithms)
 In an OOC setting: fast memory is large, can even accommodate most of the memory use.

2. Bandwidth is more a concern than latency.

3. Problem: without special hardware, disk I/O is sequential by nature.
 - If I/O time is large we cannot hope for high speedups in factorization.
Background: Multifrontal Cholesky (sketch)

Input: Matrix A
Output: L broken into **factor blocks**

1. **Symbolic factorization:**
 - form supernodes and etree
2. recursive-factorize(etree-root)

Recursive-factorize(etree-node)

1. For each child k of etree-node call recursive-factorize(k) and get **contribution block**
2. Form **frontal matrix** using input matrix and contribution blocks
3. Discard used contribution blocks.
4. Factor supernode to create **factor block**
5. Using front and factor block, create **contribution block**
Issues

- Communication complexity of the multifrontal method
- Communication costs and smart use of main memory
- Parallelism / Memory-usage / Communication trade-off
- Accuracy / Communication trade-off
Communication complexity of the multifrontal method
We want to use a multifrontal method since it allows the use of large blocks when calling BLAS.

However, Rotkin and Toledo (2004) observe that in an OOC setting the multifrontal method has a serious defect: there is a poor computation-to-communication ratio for tall-and-skinny supernodes.
Is it really a problem?

- Poor computation-to-communication ratio is also a problem for other memory hierarchies; it just another way to say that multifrontal is not communication optimal for some matrices.

But what about “real” matrices?

- Grigori, David, Demmel and Peyronnet 2010: On model problem (2D and 3D grids) the multifrontal method is communication optimal when supernodes are + separators (and some additional assumptions).
Communication costs and smart use of main memory
The communication complexity analysis is important, but not sufficient here.

- "Fast" memory is very large, analysis assumes it is small.
- The sequential nature of disk I/O implies that even constants matter.
- It applies only to the factor phase, but for the solve phase the situation is worse: it is completely I/O bound!

We want to make good use of main memory to reduce communication costs.
Minimizing I/O: Simple scheme

Assumptions:
- Factors blocks are always written to disk.
- A contribution block can be split between memory and disk.
- The active frontal matrix is held in memory.

Agullo (2008):
For a given postorder of the etree to get min I/O, write the least recently used contribution block data when some I/O is necessary.
Why factors on disk?

- Writing a word from a factor block to disk will cause a one word of W+R.
- Keeping a factor block word in memory and writing a contribution word byte instead will cause:
 - at least one W+R for that word
 - possibly many W+R of bytes from other contribution blocks
- It is better to evict a words from factor blocks first.
- So: if maximum stack size bigger than memory, factor blocks should be kept on disk.
Why not factors on disk?

However,

- Analysis no longer correct when writing/reading complete (factor/contribution) blocks
- Maximum stack size may be reached midway
 - Space to store factors after max was achieved?
- In parallel, only an upper bound of maximum stack size
- Not the same cost of I/O at different phases:
 - Factor phase is computationally bound...
 I/O can be hidden using computation
 - Solve phase is I/O bound...
 I/O cannot be hidden

We try to balance: keep many factor blocks in memory, but not to send too many contribution blocks to disk
Why not factors on disk?

However,

- Analysis no longer correct when writing/reading complete (factor/contribution) blocks
- Maximum stack size may be reached midway
 - Space to store factors after max was achieved?
- In parallel, only an *upper bound* of maximum stack size
- Not the same cost of I/O at different phases:
 - Factor phase is *computationally bound*...
 - I/O can be hidden using computation
 - Solve phase is *I/O bound*...
 - I/O cannot be hidden

We try to balance: keep many factor blocks in memory, but not to send too many contribution blocks to disk
Our memory management scheme

Large memory buffer – allocated at the beginning

Task private memory

Expanding space for factors:
- Filled from right to left
- Block location determined statically.
- Preference for top of etree.

Shared buffer for contribution block stacks. “L2” buffer; the “L1” thinks it is on disk.

“Top” of contribution block stack. “L1” buffer.

Working space:
Current frontal and largest sibling contribution block.

Assumptions:
1) Tasks are continuous subtrees
2) Blocks are processed as a unit
3) Frontal matrices are always processed in-core
4) Extend-add always done in-core
Parallelism / Memory-usage / Communication tradeoff
Minimum memory

Assumptions:
- All frontal matrices are processed in memory
- Contribution blocks loaded as one unit

We need at least enough in-core memory to hold any single frontal matrix and largest child contribution.

In parallel: several such pairs can exist together

- Increase in #threads increases minimum memory
- ... which decreases space for buffering factor/contribution blocks
- ... which increases I/O and therefore time for I/O
- ... which reduces parallelism
Assumptions:

- All frontal matrices are processed in memory
- Contribution blocks loaded as one unit

We need at least enough in-core memory to hold any single frontal matrix and largest child contribution.

In parallel: several such pairs can exist together

Increase in #threads increases minimum memory
... which decreases space for buffering factor/contribution blocks
... which increases I/O and therefore time for I/O
... which reduces parallelism
Countermeasures

1. Avoid too aggressive parallelism, i.e. spawning many tasks and relying on work-stealing.

2. “Pushing down” parallelism to
 - fit into available in-core memory
 - reduce memory requirements and allow more factor blocks to be kept in memory (still experimenting with that)
Accuracy / Communication Trade-off
Reducing Accuracy for Reducing Communication

- Full double precision needs 8 bytes, single precision 4 bytes.
- Using single precision reduces I/O by more than 50%.
 - Data written to disk is overflow, which is reduced.
- When I/O is big, saving can be substantial, especially in a parallel setting.
- If I/O is sufficiently reduced, accuracy can be recovered using iterative refinement.

Instead of just reducing accuracy we use (lossy) compression.
Compression

Underlying observations:
- Many zeros early in the factorization, very few later.
- Values tend to have a small exponent range, and few unique exponents.

Compression method:
- Compression is done on both contribution blocks and factor blocks, but they may be amalgamated or broken.
- In each block, analyze the exponents and compress them (e.g., fixed length encoding).
- Round additional least significant bits to meet compression goal.
Preliminary Experimental Results
Speedup

(no compression)

Speedup of OOC solver

2 Cores
4 Cores
8 Cores

Matrix (sorted by 1 CPU time)
WSMP OOC vs. IC - sequential and 8 cores

(no compression)
Effect of compression

(8 cores, a large matrix)
Comparision to other libraries

(no compression)
Parallelizing an out-of-core solver is challenging because communication is not only slow but also sequential.

Decent speed-up are achievable by smart use of memory: not all communication affect scalability the same, so it better to keep factors in memory.

Main contributions:

- A novel method to manage memory in a parallel out-of-core solver.
- "Pushing down of parallelism" to enable utilization of very large processor counts without increasing in-core memory.
- Method to determine which blocks are kept in memory and which on disk.
- The use of compression to speed up the solve phase.

OOC will be available in the next release of WSMP. Libraries downloadable from:
Thank You! Questions?