Canard-Induced Mixed Mode Oscillations
In Pituitary Lactotrophs

Theodore Vo1 Martin Wechselberger1
Wondimu Teka2 Richard Bertram2 Joël Tabak3

1School of Mathematics & Statistics
University of Sydney

2Department of Mathematics
Florida State University

3Department of Biological Science
Florida State University

SIAM LIFE SCIENCES CONFERENCE
AUGUST 10, 2012
MMOs In A 3-Timescale System

Theo Vo

Motivation
MMO Model
Bifurcations

1-Fast/3-Slow
Layer Flow
Reduced Flow
Canards

3-Fast/1-Slow
G.S.P.T
Dynamic MMOs
Averaging

3-Timescale
Double Limit
Inheritance

Summary

Motivation

Theo Vo

(a) http://www.empowher.com/media/reference/apoplexy

(b) http://www.scholarpedia.org/article/Models_of_hypothalamus
By contrast, application of the Ca$^{2+}$ channel blockers, nifedipine and Cd$^{2+}$, prolonged depolarization is required to be sufficient to trigger secretion, whereas in neuroendocrine cells prolonged depolarization is required to be sufficient to trigger secretion, whereas in neuroendocrine cells.
Motivation

Dynamic MMOs

Reduced Flow

Bifurcations

Layer Flow

Canards

 MMO Model

G.S.P.T

Summary

Pituitary Lactotroph Model

\[C_m \frac{dV}{dt} = -(I_{Ca} + I_K + I_{SK} + I_A) \]

\[\frac{dn}{dt} = \frac{n_\infty(V) - n}{\tau_n} \]

\[\frac{de}{dt} = \frac{e_\infty(V) - e}{\tau_e} \]

\[\frac{dc}{dt} = -f_c(\alpha I_{Ca} + k_c c) \]

\[I_{Ca} = g_{Ca} m_\infty(V)(V - V_{Ca}) \]

\[I_K = g_K n(V - V_K) \]

\[I_{SK} = g_{SK} s_\infty(c)(V - V_K) \]

\[I_A = g_A a_\infty(V)e(V - V_K) \]
Dynamic and Calcium-Clamped MMOs
Bifurcation Structure

MMOs In A 3-Timescale System

Motivation
MMO Model
Bifurcations

1-Fast/3-Slow
Layer Flow
Reduced Flow
Canards

3-Fast/1-Slow
G.S.P.T
Dynamic MMOs
Averaging

3-Timescale
Double Limit
Inheritance

Summary
A 3-Timescale Problem

Theo Vo

MMOs In A 3-Timescale System

Motivation
MMO Model
Bifurcations

1-Fast/3-Slow
Layer Flow
Reduced Flow
Canards

3-Fast/1-Slow
G.S.P.T
Dynamic MMOs
Averaging

3-Timescale
Double Limit
Inheritance

Summary

A 3-Timescale Problem

\[\varepsilon \frac{dV}{dt_L} = f(V, n, e, c) \]
\[\frac{dn}{dt_L} = g_1(V, n) \]
\[\frac{de}{dt_L} = g_2(V, e) \]
\[\frac{dc}{dt_L} = \delta h(V, c) \]
\[\tau_V = \frac{C_m}{g} < 1 \text{ ms} \]
\[\tau_n \approx 43 \text{ ms} \]
\[\tau_e \approx 20 \text{ ms} \]
\[\tau_c = \frac{1}{f_c k_c} \approx 625 \text{ ms} \]

\[0 < \varepsilon = \frac{\tau_V}{\tau_e} \ll 1, \quad 0 < \delta = \frac{\tau_e}{\tau_c} \ll 1 \]
MMOs In A 3-Timescale System

Theo Vo

Motivation
MMO Model
Bifurcations

1-Fast/3-Slow
Layer Flow
Reduced Flow
Canards

3-Fast/1-Slow
G.S.P.T
Dynamic MMOs
Averaging

3-Timescale
Double Limit
Inheritance

Summary
Geometric Singular Perturbation Theory

MMOs In A 3-Timescale System

Theo Vo

Motivation

MMO Model
Bifurcations

1-Fast/3-Slow

Layer Flow
Reduced Flow
Canards

3-Fast/1-Slow

G.S.P.T
Dynamic MMOs
Averaging

3-Timescale

Double Limit
Inheritance

Summary

‘SLOW’ SYSTEM

\[
\begin{align*}
\epsilon \frac{dV}{dt_I} &= f(V, n, e, c) \\
\frac{dn}{dt_I} &= g_1(V, n) \\
\frac{de}{dt_I} &= g_2(V, e) \\
\frac{dc}{dt_I} &= \delta h(V, c)
\end{align*}
\]

FAST SYSTEM

\[
\begin{align*}
\frac{dV}{dt_F} &= f(V, n, e, c) \\
\frac{dn}{dt_F} &= \epsilon g_1(V, n) \\
\frac{de}{dt_F} &= \epsilon g_2(V, e) \\
\frac{dc}{dt_F} &= \epsilon \delta h(V, c)
\end{align*}
\]

\[t_F = \epsilon t_I\]
MMOs In A 3-Timescale System

Theo Vo

Motivation
MMO Model
Bifurcations

1-Fast/3-Slow
Layer Flow
Reduced Flow
Canards

3-Fast/1-Slow
G.S.P.T
Dynamic MMOs
Averaging

3-Timescale
Double Limit
Inheritance

Summary

Geometric Singular Perturbation Theory

'SLOW' SYSTEM

\[\varepsilon \frac{dV}{dt_I} = f(V, n, e, c) \]
\[\frac{dn}{dt_I} = g_1(V, n) \]
\[\frac{de}{dt_I} = g_2(V, e) \]
\[\frac{dc}{dt_I} = \delta h(V, c) \]

\[\varepsilon \quad \downarrow \quad 0 \]

FAST SYSTEM

\[\frac{dV}{dt_F} = f(V, n, e, c) \]
\[\frac{dn}{dt_F} = \varepsilon g_1(V, n) \]
\[\frac{de}{dt_F} = \varepsilon g_2(V, e) \]
\[\frac{dc}{dt_F} = \varepsilon \delta h(V, c) \]

\[\varepsilon \quad \downarrow \quad 0 \]

3D REDUCED PROBLEM

\[0 = f(V, n, e, c) \]
\[\frac{dn}{dt_I} = g_1(V, n) \]
\[\frac{de}{dt_I} = g_2(V, e) \]
\[\frac{dc}{dt_I} = \delta h(V, c) \]

1D LAYER PROBLEM

\[\frac{dV}{dt_F} = f(V, n, e, c) \]
\[\frac{dn}{dt_F} = 0 \]
\[\frac{de}{dt_F} = 0 \]
\[\frac{dc}{dt_F} = 0 \]
The Layer Problem

\[
\begin{align*}
\frac{dV}{dt_F} &= f(V, n, e, c) \\
\frac{dn}{dt_F} &= 0 \\
\frac{de}{dt_F} &= 0 \\
\frac{dc}{dt_F} &= 0
\end{align*}
\]

\[S = S_a \cup L \cup S_r = \{(V, n, e, c) \in \mathbb{R}^4 : f(V, n, e, c) = 0\}\]

Attracting branch, \(S_a := \{(V, n, e, c) \in S : f_V < 0\}\)

Repelling branch, \(S_r := \{(V, n, e, c) \in S : f_V > 0\}\)

Fold surface, \(L := \{(V, n, e, c) \in S : f_V = 0\}\)

CAUTION: THESE PLOTS SHOW 3D SLICES OF A 4D PHASE SPACE
The Reduced System

Reduced System

\[0 = f(V, n, e, c) \]
\[\frac{dn}{dt_I} = g_1(V, n) \]
\[\frac{de}{dt_I} = g_2(V, e) \]
\[\frac{dc}{dt_I} = \delta h(V, c) \]

Projection

\[-f_V \frac{dV}{dt_I} = F_\delta(V, n, e, c) \]
\[0 = f(V, n, e, c) \]
\[\frac{de}{dt_I} = g_2(V, e) \]
\[\frac{dc}{dt_I} = \delta h(V, c) \]

\[F_\delta(V, n, e, c) := f_n g_1 + f_e g_2 + \delta f_c h \]
The Reduced System

Reduced System

\[-f_V \frac{dV}{dt_i} = F_\delta(V, n, e, c)\]

\[\frac{de}{dt_i} = g_2(V, e)\]

\[\frac{dc}{dt_i} = \delta h(V, c)\]

Desingularized

\[\frac{dV}{dt_i^*} = F_\delta(V, n, e, c)\]

\[\frac{de}{dt_i^*} = -f_V g_2(V, e)\]

\[\frac{dc}{dt_i^*} = -\delta f_V h(V, c)\]

- Ordinary singularities
 \[E := \{(V, n, e, c) \in S : g_1 = g_2 = h = 0\}\]

- Folded singularities
 \[M_\delta := \{(V, n, e, c) \in S : f_V = F_\delta = 0\}\]
Singular Orbit Construction

CAUTION: We are plotting 3D projections of a 4D system!
Perturbations – Mixed Mode Oscillations

MMOs In A 3-Timescale System

Theo Vo

Motivation
MMO Model
Bifurcations

1-Fast/3-Slow
Layer Flow
Reduced Flow
Canards

3-Fast/1-Slow
G.S.P.T
Dynamic MMOs
Averaging

3-Timescale
Double Limit
Inheritance

Summary
Perturbations – Slow Manifolds

$\varepsilon = 0$

S\textsubscript{a}

S\textsubscript{r} \cap \Sigma

S\textsubscript{a} \cap \Sigma

V (mV)

0.225 0.23 0.235

−18

−15

−12

0.24 0.22 0.20

Summary

Inheritance

Dynamic MMOs

Average

G.S.P.T

3-Fast/1-Slow

Reduced Flow

Flow

Layer Flow

1-Fast/3-Slow

Bifurcations

MMO Model

Motivation

Theo Vo

MMOs In A 3-Timescale System
Perturbations – Slow Manifolds

\[\varepsilon = 0.0005 \]
MMOs In A 3-Timescale System

Theo Vo

Motivation

- MMO Model
- Bifurcations

1-Fast/3-Slow

- Layer Flow
- Reduced Flow
- Canards

3-Fast/1-Slow

- G.S.P.T
- Dynamic MMOs
- Averaging

3-Timescale

- Double Limit
- Inheritance

Summary

Perturbations – Slow Manifolds

$\varepsilon = 0.001$

![Graph showing perturbations and slow manifolds](graph.png)
Perturbations – Slow Manifolds

\[\varepsilon = 0.002 \]

\[S^\varepsilon_a \]

\[S^\varepsilon_r \]

\[S^\varepsilon_r \cap \Sigma \]

\[S^\varepsilon_a \cap \Sigma \]
Perturbations – Canards

\[\varepsilon = 0.002 \]
MMOs In A 3-Timescale System

Theo Vo

Motivation
MMO Model
Bifurcations

1-Fast/3-Slow
Layer Flow
Reduced Flow
Canards

3-Fast/1-Slow
G.S.P.T
Dynamic MMOs
Averaging

3-Timescale
Double Limit
Inheritance

Summary

Rationale

3-Timescale Bursting Model

\[\varepsilon \to 0 \]
\[\delta \neq 0 \]
\[\varepsilon \neq 0 \]

1 Fast
3 Slow

3 Fast
1 Slow

1 Fast
2 Intermediate
1 Slow

\[\varepsilon = 0 \]
\[\delta \to 0 \]
\[\varepsilon \to 0 \]

Bifurcation Theory
G.S.P.T

Origin & Properites of Bursting

Bifurcation Theory
G.S.P.T
Motivation

MMO Model

Bifurcations

1-Fast/3-Slow

Layer Flow

Reduced Flow

Canards

3-Fast/1-Slow

G.S.P.T

Dynamic MMOs

Averaging

3-Timescale

Double Limit

Inheritance

Summary

Geometric Singular Perturbation Analysis

‘FAST’ SYSTEM

\[
\begin{align*}
\epsilon \frac{dV}{dt_I} &= f(V, n, e, c) \\
\frac{dn}{dt_I} &= g_1(V, n) \\
\frac{de}{dt_I} &= g_2(V, e) \\
\frac{dc}{dt_I} &= \delta h(V, c)
\end{align*}
\]

\[\delta \downarrow 0\]

\[\delta \downarrow 0\]

SLOW SYSTEM

\[
\begin{align*}
\epsilon \delta \frac{dV}{dt_S} &= f(V, n, e, c) \\
\delta \frac{dn}{dt_S} &= g_1(V, n) \\
\delta \frac{de}{dt_S} &= g_2(V, e) \\
\frac{dc}{dt_S} &= h(V, c)
\end{align*}
\]

3D LAYER PROBLEM

\[
\begin{align*}
\epsilon \frac{dV}{dt_I} &= f(V, n, e, c) \\
\frac{dn}{dt_I} &= g_1(V, n) \\
\frac{de}{dt_I} &= g_2(V, e) \\
\frac{dc}{dt_I} &= 0
\end{align*}
\]

1D REDUCED PROBLEM

\[
\begin{align*}
0 &= f(V, n, e, c) \\
0 &= g_1(V, n) \\
0 &= g_2(V, e) \\
\frac{dc}{dt_S} &= h(V, c)
\end{align*}
\]
Theo Vo

Motivation

MMO Model

Bifurcations

1-Fast/3-Slow

Layer Flow

Reduced Flow

Canards

3-Fast/1-Slow

G.S.P.T

Dynamic MMOs

Averaging

3-Timescale

Double Limit

Inheritance

Summary

Layer and Reduced Flows

\[\varepsilon \frac{dV}{dt} = f(V, n, e, c) \]

\[\frac{dn}{dt} = g_1(V, n) \]

\[\frac{de}{dt} = g_2(V, e) \]

\[\frac{dc}{dt} = 0 \]

\[SS = \{(V, n, e, c) \in S : g_1(V, n) = g_2(V, e) = 0 \} \]

Fold points, \[LL := \{(V, n, e, c) \in SS : \text{det } Df = 0 \} \]

Hopf Bifurcation, \[SS_H := \{(V, n, e, c) \in SS : f_V = \mathcal{O}(\varepsilon) \} \]
Singular Orbits

MMOs In A 3-Timescale System

Theo Vo

Motivation
MMO Model
Bifurcations
1-Fast/3-Slow
Layer Flow
Reduced Flow
Canards
3-Fast/1-Slow
G.S.P.T
Dynamic MMOs
Averaging
3-Timescale
Double Limit
Inheritance
Summary
Dynamic Hopf Bifurcation

MMOs In A 3-Timescale System

Theo Vo

Motivation
MMO Model
Bifurcations
1-Fast/3-Slow
Layer Flow
Reduced Flow
Canards
3-Fast/1-Slow
G.S.P.T
Dynamic MMOs
Averaging
3-Timescale
Double Limit
Inheritance
Summary
Averaging

MMOs In A 3-Timescale System

Theo Vo

Motivation
MMO Model
Bifurcations
1-Fast/3-Slow
Layer Flow
Reduced Flow
Canards
3-Fast/1-Slow
G.S.P.T
Dynamic MMOs
Averaging
3-Timescale
Double Limit
Inheritance
Summary
Calcium-Clamped MMOs

Motivation

MMO Model
Bifurcations

1-Fast/3-Slow

Layer Flow
Reduced Flow
Canards

3-Fast/1-Slow

G.S.P.T
Dynamic MMOs
Averaging

3-Timescale

Double Limit
Inheritance

Summary

\[
\frac{dc}{dt} = \frac{1}{T(c)} \int_0^{T(c)} h(V(s, c), c) \, ds \equiv \bar{h}(c)
\]

![Graph of calcium-clamped MMOs](image)

- **SS**
- **SS_H**
- **Averaged**
- **\(h = 0 \)**

![Graph of averaged MMOs](image)

- **\(\Gamma(\epsilon, \delta) \)**
- **Averaged**
MMOs In A 3-Timescale System

Motivation
- MMO Model
- Bifurcations

1-Fast/3-Slow
- Layer Flow
- Reduced Flow
- Canards

3-Fast/1-Slow
- G.S.P.T
- Dynamic MMOs
- Averaging

3-Timescale
- Double Limit
- Inheritance

Summary

Rationale

3-Timescale Bursting Model

1 Fast
3 Slow

3 Fast
1 Slow

1 Fast
2 Intermediate
1 Slow

Bifurcation Theory
- G.S.P.T

Origin & Properites of Bursting

Bifurcation Theory
- G.S.P.T
The Double Limit

\[\varepsilon = 0, \delta \neq 0 \]

1-Fast/3-Slow Layer
\[
\frac{dV}{dt_F} = f(V, n, e, c) \\
\frac{dn}{dt_F} = 0 \\
\frac{de}{dt_F} = 0 \\
\frac{dc}{dt_F} = 0
\]

1-Fast/3-Slow Reduced
\[0 = f(V, n, e, c) \]
\[
\frac{dn}{dt_i} = g_1(V, n) \\
\frac{de}{dt_i} = g_2(V, e) \\
\frac{dc}{dt_i} = \delta h(V, c)
\]

\[\varepsilon \neq 0, \delta = 0 \]

3-Fast/1-Slow Layer
\[
\frac{dV}{dt_i} = f(V, n, e, c) \\
\frac{dn}{dt_i} = g_1(V, n) \\
\frac{de}{dt_i} = g_2(V, e) \\
\frac{dc}{dt_i} = 0
\]

3-Fast/1-Slow Reduced
\[0 = f(V, n, e, c) \]
\[0 = g_1(V, n) \]
\[0 = g_2(V, e) \]
\[
\frac{dc}{dt_s} = h(V, c)
\]
The Double Limit

$\varepsilon = 0, \delta = 0$

1D Fast Subsystem

\[
\frac{dV}{dt_F} = f(V, n, e, c)
\]
\[
\frac{dn}{dt_F} = 0
\]
\[
\frac{de}{dt_F} = 0
\]
\[
\frac{dc}{dt_F} = 0
\]

2D Intermediate Subsystem

\[
0 = f(V, n, e, c)
\]
\[
\frac{dn}{dt_i} = g_1(V, n)
\]
\[
\frac{de}{dt_i} = g_2(V, e)
\]
\[
\frac{dc}{dt_i} = 0
\]

2D Intermediate Subsystem

\[
0 = f(V, n, e, c)
\]
\[
\frac{dn}{dt_i} = g_1(V, n)
\]
\[
\frac{de}{dt_i} = g_2(V, e)
\]
\[
\frac{dc}{dt_i} = 0
\]

1D Slow Subsystem

\[
0 = f(V, n, e, c)
\]
\[
0 = g_1(V, n)
\]
\[
0 = g_2(V, e)
\]
\[
\frac{dc}{dt_S} = h(V, c)
\]
Geometric Structures Persist

2D INTERMEDIATE

\[0 = f(V, n, e, c) \]
\[\frac{dn}{dt_l} = g_1(V, n) \]
\[\frac{de}{dt_l} = g_2(V, e) \]
\[\frac{dc}{dt_l} = 0 \]

Proj & Desing

DESINGULARIZED

\[0 = f(V, n, e, c) \]
\[\frac{dV}{dt^*_l} = F_0(V, n, e, c) \]
\[\frac{de}{dt^*_l} = -f_V g_2(V, e) \]
\[\frac{dc}{dt^*_l} = 0 \]
Dynamic & Calcium-Clamped MMOs

Motivation
MMO Model
Bifurcations
1-Fast/3-Slow
Layer Flow
Reduced Flow
Canards
3-Fast/1-Slow
G.S.P.T
Dynamic MMOs
Averaging
3-Timescale
Double Limit
Inheritance
Summary

Dynamic MMOs

Calcium-clamped MMOs
MMOs In A 3-Timescale System

Theo Vo

Motivation
MMO Model
Bifurcations

1-Fast/3-Slow
Layer Flow
Reduced Flow
Canards

3-Fast/1-Slow
G.S.P.T
Dynamic MMOs
Averaging

3-Timescale
Double Limit
Inheritance

Summary

\((\varepsilon, \delta) = (0, 0)\)

\((\varepsilon, \delta) \neq (0, 0)\)

\[g_A \quad (\text{nS}) \]

\[g_K \quad (\text{nS}) \]

Dep

Bistability

Calcium-clamped

Dynamic MMO

\(E_{\text{SHB}}\)

Spiking

Hopf Bifurcation

Bursting

Period-Doubling

Spiking

\[V \quad (\text{mV}) \]

\[\text{Time (ms)} \]
Recapitulation

- Motivation: explain dynamics
- 1-Fast/3-Slow: canard theory
- 3-Fast/1-Slow: delay phenomena
- 3-Timescale: best of both worlds

It never hurts to look at your problem from multiple points of view!
Thank You!