Switching in Multisite Phosphorylation Networks

Carsten Conradi, Dietrich Flockerzi, Katharina Holstein

Max-Planck-Institute Dynamics of Complex Technical Systems
Magdeburg

San Diego, August 2012
Overview

1. Dynamical systems defined by mass action networks
2. Switching and multistationarity in mass action networks
3. Conditions for multistationarity
4. Switching in the NFAT – Calcineurin system
5. Summary
Overview

1. Dynamical systems defined by mass action networks

2. Switching and multistationarity in mass action networks

3. Conditions for multistationarity
 - The polynomial system $S \text{diag}(k)\phi(a) = 0$, $S \text{diag}(k)\phi(b) = 0$
 - Adding the linear system
 - The Transformed Equation $Y^T \mu = \ln \frac{E^\nu}{E^\lambda}$
 - The nonlinear constraint $\kappa \in \text{im}_+(\Psi)$

4. Switching in the NFAT – Calcineurin system

5. Summary
A simple example

Dynamical system with polynomial right hand side

\[
\begin{align*}
\dot{x}_1 &= k_1 x_1 x_2 - k_2 x_1^2 \\
\dot{x}_2 &= -k_1 x_1 x_2 + k_2 x_1^2
\end{align*}
\]

\[
\dot{x} = \begin{bmatrix}
1 & -1 \\
-1 & 1
\end{bmatrix}
\begin{bmatrix}
k_1 & 0 \\
0 & k_2
\end{bmatrix}
\begin{bmatrix}
x_1 x_2 \\
x_1^2
\end{bmatrix}
= : S
= : \phi(x)
\]

Observe: \(\text{rank}(S) = 1 \iff (1, 1) \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} = (0, 0)\)
The dynamical system is defined by two matrices

1. **Stoichiometric matrix**

 \[
 S = \begin{bmatrix}
 1 & -1 \\
 -1 & 1 \\
 \end{bmatrix}
 \]

2. **Rate exponent matrix (defining \(\phi(x) = (x_1, x_2, x_1^2)^T \))**

 \[
 Y = \begin{bmatrix}
 1 & 2 \\
 1 & 0 \\
 \end{bmatrix}
 \]
Mass action networks in general

Objects defined by mass action networks
- Dynamical System $\dot{x} = S \text{diag}(k) \phi(x)$
- Stoichiometric matrix S
- Monomial vector $\phi(x)$
- Rate exponent matrix Y

Trajectories: confined to affine linear subspaces
- S does not have full row rank $\Rightarrow Z^T S \equiv 0$
- Trajectory $x(t)$ with initial value $x(0)$ satisfies
 \[Z^T x(t) = Z^T x(0) \iff x(t) - x(0) \in \text{im}(S) \]
- Trajectories $x(t)$: confined to **affine linear subspace**: $x(0) + \text{im}(S)$
Overview

1. Dynamical systems defined by mass action networks

2. Switching and multistationarity in mass action networks

3. Conditions for multistationarity
 - The polynomial system $S \text{diag}(k)\phi(a) = 0$, $S \text{diag}(k)\phi(b) = 0$
 - Adding the linear system
 - The Transformed Equation $Y^T \mu = \ln \frac{E_\nu}{E_\lambda}$
 - The nonlinear constraint $\kappa \in \text{im}_+(\Psi)$

4. Switching in the NFAT – Calcineurin system

5. Summary
Switching and multistationarity in mass action networks

- Switching: solutions $x(t)$ end up in different regions of state space (depending on initial conditions)
- Switching occurs in case of

Bistability

Saddle-point (stable manifold as switching surface)

- Multistationarity may lead to switching!
Trajectories are confined to affine linear subspaces

Steady states of mass action networks

- In general the steady state variety
 \[
 \{(x, k) \in \mathbb{R}^n_0 \times \mathbb{R}^r_0 | S \text{ diag}(k) \phi(x) = 0\}
 \]
 has dimension > 0

- A trajectory $x(t)$ does not ‘see’ all of them ($x(t)$ is confined to an affine linear subspace)

- A trajectory $x(t)$ (initial value $x(0)$) only ‘sees’ those contained in $x(0) + \text{im}(S)$

- Interested in
 \[
 x(0) + \text{im}(S) \cap \{x \in \mathbb{R}^n_0 | S \text{ diag}(k) \phi(x) = 0\}
 \]
Definition of multistationarity

Multistationarity
Existence of at least two distinct positive states \(a \) and \(b \) and a positive vector of rate constants \(k \) satisfying

- **polynomial system**

 \[
 S \text{ diag}(k) \phi(a) = 0, \quad S \text{ diag}(k) \phi(b) = 0
 \]

- **linear condition**

 \[
 Z^T a = Z^T b \iff b - a \in \text{im}(S)
 \]
Overview

1. Dynamical systems defined by mass action networks

2. Switching and multistationarity in mass action networks

3. Conditions for multistationarity
 - The polynomial system $S \text{diag}(k)\phi(a) = 0$, $S \text{diag}(k)\phi(b) = 0$
 - Adding the linear system
 - The Transformed Equation $Y^T \mu = \ln \frac{E_\nu}{E_\lambda}$
 - The nonlinear constraint $\kappa \in \text{im}_+ (\Psi)$

4. Switching in the NFAT – Calcineurin system

5. Summary
Overview

1. Dynamical systems defined by mass action networks

2. Switching and multistationarity in mass action networks

3. Conditions for multistationarity
 - The polynomial system $S \text{diag}(k)\phi(a) = 0$, $S \text{diag}(k)\phi(b) = 0$
 - Adding the linear system
 - The Transformed Equation $Y^T\mu = \ln \frac{E\nu}{E\lambda}$
 - The nonlinear constraint $\kappa \in \text{im}_+(\Psi)$

4. Switching in the NFAT – Calcineurin system

5. Summary
A transformation

- **Goal:** positive solutions a, b and k to the polynomials $S \text{diag}(k)\phi(a) = 0$, $S \text{diag}(k)\phi(b) = 0$

- **Transformation:** $(a, b) \rightarrow (a, \mu)$:

 $$\mu_i := \ln \frac{b_i}{a_i}, \quad b_i = e^{\mu_i} a_i$$

- **Observation I:**

 $$b^\gamma = \prod_i b_i^{\gamma_i} = \prod_i (e^{\mu_i} a_i)^{\gamma_i} = \prod_i (e^{\mu_i})^{\gamma_i} \cdot \prod_i a_i^{\gamma_i} = e^{\gamma^T \mu} a^\gamma$$

- And hence

 $$\phi(b) = \text{diag}(e^{\gamma^T \mu}) \phi(a)$$
A transformation

- **Goal:** positive solutions a, b and k to the polynomials

$$S \text{ diag}(k)\phi(a) = 0, \; S \text{ diag}(k)\phi(b) = 0$$

- **Transformation:** $(a, b) \rightarrow (a, \mu)$:

$$\mu_i := \ln \frac{b_i}{a_i}, \; b_i = e^{\mu_i} a_i$$

- **Observation I:**

$$b^\gamma = \prod_i b_i^{\gamma_i} = \prod_i (e^{\mu_i} a_i)^{\gamma_i} = \prod_i (e^{\mu_i})^{\gamma_i} \cdot \prod_i a_i^{\gamma_i} = e^{\gamma^T \mu} a^\gamma$$

- And hence

$$\phi(b) = \text{diag}(e^{Y^T \mu}) \phi(a)$$
A transformation

- **Goal:** positive solutions \(a, b \) and \(k \) to the polynomials

\[
S \operatorname{diag}(k)\phi(a) = 0, \quad S \operatorname{diag}(k)\phi(b) = 0
\]

- **Transformation:** \((a, b) \rightarrow (a, \mu)\):

\[
\mu_i := \ln \frac{b_i}{a_i}, \quad b_i = e^{\mu_i} a_i
\]

- **Observation I:**

\[
\begin{align*}
\mathbf{b}^\gamma &= \prod_i b_i^{\gamma_i} = \prod_i (e^{\mu_i} a_i)^{\gamma_i} = \prod_i (e^{\mu_i})^{\gamma_i} \cdot \prod_i a_i^{\gamma_i} = e^{\gamma^T \mu} a^\gamma \\
\phi(b) &= \operatorname{diag}(e^{\gamma^T \mu}) \phi(a)
\end{align*}
\]

- And hence
A transformation

- **Goal:** positive solutions a, b and k to the **polynomials**

$$S \text{ diag}(k) \phi(a) = 0, \ S \text{ diag}(k) \phi(b) = 0$$

- **Transformation:** $(a, b) \rightarrow (a, \mu)$:

$$\mu_i := \ln \frac{b_i}{a_i}, \ b_i = e^{\mu_i} a_i$$

- **Observation I:**

$$b^\gamma = \prod_i b_i^{\gamma_i} = \prod_i (e^{\mu_i} a_i)^{\gamma_i} = \prod_i (e^{\mu_i})^{\gamma_i} \cdot \prod_i a_i^{\gamma_i} = e^{\gamma^T \mu} a^\gamma$$

- And hence

$$\phi(b) = \text{diag}(e^{\gamma^T \mu}) \phi(a)$$
Observation II:

\[S \text{ diag}(k) \phi(x) = 0, \ k, x > 0 \iff \text{diag}(k) \phi(x) \in \text{int} (\ker(S) \cap \mathbb{R}^r_{\geq 0}) \]

Reparameterize \(\text{diag}(k) \phi(a), \text{diag}(k) \phi(b) \) over \(\text{int} (\ker(S) \cap \mathbb{R}^r_{> 0}) \) using finite set of unique generators \(E \) (up to scalar multiplication):

Dividing equations:

\[e^{Y^T \mu} = \frac{E \nu}{E \lambda} \]

Ultimately (applying \(\ln \)):

Transformed equation

\[Y^T \mu = \ln \frac{E \nu}{E \lambda} \]
Observation II:

\[S \text{ diag}(k) \phi(x) = 0, \ k, x > 0 \Leftrightarrow \text{diag}(k) \phi(x) \in \text{int} (\ker(S) \cap \mathbb{R}^r_{\geq 0}) \]

Reparameterize \(\text{diag}(k) \phi(a) \), \(\text{diag}(k) \phi(b) \) over \(\text{int} (\ker(S) \cap \mathbb{R}^r_{\geq 0}) \) using \textbf{finite set of unique} generators \(E \) (up to scalar multiplication):

\[\text{diag}(k) \phi(a) \]

Dividing equations:

\[e^{YT \mu} = \frac{E \nu}{E \lambda} \]

Ultimately (applying \(\ln \)):

\[YT \mu = \ln \frac{E \nu}{E \lambda} \]
Observation II:

\[S \text{ diag}(k) \phi(x) = 0, \ k, x > 0 \Leftrightarrow \text{diag}(k) \phi(x) \in \text{int} (\ker(S) \cap R^r_{\geq 0}) \]

Reparameterize \(\text{diag}(k) \phi(a)\), \(\text{diag}(k) \phi(b)\) over \(\text{int} (\ker(S) \cap R^r_{\geq 0})\) using **finite set of unique** generators \(E\) (up to scalar multiplication):

\[\text{diag}(k) \phi(a) = E \lambda \]

Dividing equations:

\[e^{Y^T \mu} = \frac{E \nu}{E \lambda} \]

Ultimately (applying \(\ln\)):

\[Y^T \mu = \ln \frac{E \nu}{E \lambda} \]
Observation II:

\[S \, \text{diag}(k) \, \phi(x) = 0, \ k, x > 0 \Leftrightarrow \text{diag}(k) \, \phi(x) \in \text{int} \left(\ker(S) \cap \mathbb{R}^r_{\geq 0} \right) \]

Reparameterize \(\text{diag}(k) \, \phi(a) \), \(\text{diag}(k) \, \phi(b) \) over \(\text{int} \left(\ker(S) \cap \mathbb{R}^r_{\geq 0} \right) \) using **finite set of unique** generators \(E \) (up to scalar multiplication):

\[\text{diag}(k) \, \phi(a) = E \, \lambda \]
\[\text{diag}(k) \, \phi(b) = \text{diag}(k) \, \text{diag}(e^{Y^T \, \mu}) \, \phi(a) \]

Dividing equations:

\[e^{Y^T \, \mu} = \frac{E \, \nu}{E \, \lambda} \]

Ultimately (applying \(\ln \)):

Transformed equation

\[Y^T \, \mu = \ln \frac{E \, \nu}{E \, \lambda} \]
Observation II:

\[S \text{ diag}(k) \phi(x) = 0, \quad k, x > 0 \iff \text{diag}(k) \phi(x) \in \text{int} (\ker(S) \cap \mathbb{R}_{\geq 0}^r) \]

Reparameterize \(\text{diag}(k) \phi(a) \), \(\text{diag}(k) \phi(b) \) over \(\text{int} (\ker(S) \cap \mathbb{R}_{>0}^r) \) using \textbf{finite set of unique} generators \(E \) (up to scalar multiplication):

\[
\begin{align*}
\text{diag}(k) \phi(a) &= E \lambda \\
\text{diag}(k) \phi(b) &= \text{diag}(k) \text{ diag}(e^{Y^T \mu}) \phi(a) = E \nu
\end{align*}
\]

Dividing equations:

\[
e^{Y^T \mu} = \frac{E \nu}{E \lambda}
\]

Ultimately (applying ln):

\[
Y^T \mu = \ln \frac{E \nu}{E \lambda}
\]
Observation II:

\[S \text{ diag}(k) \phi(x) = 0, \ k, \ x > 0 \Leftrightarrow \text{diag}(k) \phi(x) \in \text{int} \left(\ker(S) \cap \mathbb{R}_{\geq 0}^r \right) \]

Reparameterize \(\text{diag}(k) \phi(a) \), \(\text{diag}(k) \phi(b) \) over \(\text{int} \left(\ker(S) \cap \mathbb{R}_{\geq 0}^r \right) \) using \textbf{finite set of unique} generators \(E \) (up to scalar multiplication):

\[
\text{diag}(k) \phi(a) = E \lambda \\
\text{diag}(k) \phi(b) = \text{diag}(k) \text{ diag}(e^{Y^T \mu}) \phi(a) = E \nu
\]

Dividing equations:

\[
e^{Y^T \mu} = \frac{E \nu}{E \lambda}
\]

Ultimately (applying \(\ln \)):

Transformed equation

\[
Y^T \mu = \ln \frac{E \nu}{E \lambda}
\]
Observation II:

\[S \text{ diag}(k) \phi(x) = 0, \quad k, x > 0 \Leftrightarrow \text{diag}(k) \phi(x) \in \text{int} \left(\ker(S) \cap \mathbb{R}^r_{\geq 0} \right) \]

Reparameterize \(\text{diag}(k) \phi(a) \), \(\text{diag}(k) \phi(b) \) over \(\text{int} \left(\ker(S) \cap \mathbb{R}^r_{> 0} \right) \) using **finite set of unique** generators \(E \) (up to scalar multiplication):

\[
\begin{align*}
\text{diag}(k) \phi(a) &= E \lambda \\
\text{diag}(k) \phi(b) &= \text{diag}(k) \text{ diag}(e^{Y^T \mu}) \phi(a) = E \nu
\end{align*}
\]

Dividing equations:

\[e^{Y^T \mu} = \frac{E \nu}{E \lambda} \]

Ultimately (applying \(\ln \)):

Transformed equation

\[Y^T \mu = \ln \frac{E \nu}{E \lambda} \]
Lemma (Conradi & Flockerzi, 2012)

The following are equivalent:

1. $\exists a, b, a \neq b \ k > 0$ such that

 $S \text{diag}(k)\phi(a) = 0$ and $S \text{diag}(k)\phi(b) = 0$

2. $\exists \mu \neq 0$ and $\nu, \lambda > 0$ such that

 $Y^T \mu = \ln \frac{E\nu}{E\lambda}$ (Transformed Equation)

Overview

1. Dynamical systems defined by mass action networks

2. Switching and multistationarity in mass action networks

3. Conditions for multistationarity
 - The polynomial system $S \text{diag}(k)\phi(a) = 0$, $S \text{diag}(k)\phi(b) = 0$
 - Adding the linear system
 - The Transformed Equation $Y^T \mu = \ln \frac{E^\nu}{E^\lambda}$
 - The nonlinear constraint $\kappa \in \text{im}_+(\Psi)$

4. Switching in the NFAT – Calcineurin system

5. Summary
Adding the linear system

- Assume a solution \((\mu, \nu, \lambda)\) to \(Y^T \mu = \ln \frac{E_\nu}{E_\lambda}\)
- Can we find positive \(a \neq b\) such that

\[
Z^T a = Z^T b \iff b - a \in \text{im}(S)
\]

Feinberg, 1995 & Conradi et. al. 2008

- Desired \(a, b > 0\) exist, if and only if there exists a \(z \in \text{im}(S)\) with \(\text{sign}(z) = \text{sign}(\mu)\)
- Linear inequality condition

Conditions for multistationarity

- The polynomial system $S \text{diag}(k)\phi(a) = 0$, $S \text{diag}(k)\phi(b) = 0$
- Adding the linear system
- The Transformed Equation $Y^T \mu = \ln \frac{E \nu}{E \lambda}$
- The nonlinear constraint $\kappa \in \text{im}_+ (\Psi)$
Solvability of the Transformed Equation

Transformed Equation

\[Y^T \mu = \ln \frac{E^\nu}{E^\lambda} \]

- Linear left hand side \(Y^T \mu \)
- Nonlinear right hand side
- \(\ln \frac{E^\nu}{E^\lambda} \): In of fractionals
Solvability of the Transformed Equation

Transformed Equation

\[Y^T \mu = \ln \frac{E \nu}{E \lambda} \]

- Linear left hand side \(Y^T \mu \)
- Nonlinear right hand side
- \(\ln \frac{E \nu}{E \lambda} \): In of fractionals

Idea (Conradi & Flockerzi, 2012)

- Necessary and sufficient conditions: existence of \(\mu, \nu, \lambda \)
- Linear inequalities
- Selected network structures (identifiable via \(\ker(Y) \) and \(E \))
Solvability of the Transformed Equation

Transformed Equation

\[Y^T \mu = \ln \frac{E \nu}{E \lambda} \]

- Linear left hand side \(Y^T \mu \)
- Nonlinear right hand side
- \(\ln \frac{E \nu}{E \lambda} \): \(\ln \) of fractionals

Idea (Conradi & Flockerzi, 2012)

- Necessary and sufficient conditions: existence of \(\mu, \nu, \lambda \)
- Linear inequalities
- Selected network structures (identifiable via \(\ker(Y) \) and \(E \))

Based on the Fredholm alternative

- Nonlinear \(\ln \frac{E \nu}{E \lambda} \in \text{im} \left(Y^T \right) \) \(\Leftrightarrow \) \(\ln \frac{E \nu}{E \lambda} \perp \text{im} \left(Y^T \right)^\perp \)
- Transformed Equation is solvable, if and only if

\[U^T Y^T \equiv 0 \Rightarrow U^T \ln \frac{E \nu}{E \lambda} = 0 \]

- Polynomial condition in \(\nu, \lambda \)
Exploit the structure of ker \((Y)\)

- **Observation III:** ker \((Y)\) often contains vectors \(u_\ell = e_i - e_j\) (differences of elements of the standard basis of \(\mathbb{R}^r\))

Trivial kernel vectors

\[u_\ell = (0, \ldots, 1, 0, \ldots, -1, 0, \ldots)^T \]

- Condition \(u_i^T \ln \frac{E_i^\nu}{E_i^\lambda} = 0\) implies equality of two elements:

\[\ln \frac{E_i^\nu}{E_i^\lambda} = \ln \frac{E_j^\nu}{E_j^\lambda} \]

- **Observation IV:** equality of two elements implies equality of all elements defined by linear combinations of row vectors \(E_i\) and \(E_j\)

\[\ln \frac{E_i^\nu}{E_i^\lambda} = \ln \frac{E_j^\nu}{E_j^\lambda} \Rightarrow \ln \frac{E_k^\nu}{E_k^\lambda} = \ln \frac{E_j^\nu}{E_j^\lambda}, \ \forall E_k \in \text{span}(E_i, E_j) \]
Exploit the structure of $\ker(Y)$

- **Observation III**: $\ker(Y)$ often contains vectors $u_\ell = e_i - e_j$ (differences of elements of the standard basis of \mathbb{R}^r)

<table>
<thead>
<tr>
<th>Trivial kernel vectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>$u_\ell = (0, \ldots, 1, 0, \ldots, -1, 0, \ldots)^T$</td>
</tr>
</tbody>
</table>

- **Condition** $u_i^T \ln \frac{E_i}{E_j} = 0$ implies equality of two elements:

 $\ln \frac{E_i}{E_j} = \ln \frac{E_j}{E_i}$

- **Observation IV**: equality of two elements implies equality of all elements defined by linear combinations of row vectors E_i and E_j

 $\ln \frac{E_i}{E_j} = \ln \frac{E_j}{E_i} \Rightarrow \ln \frac{E_k}{E_j} = \ln \frac{E_j}{E_k}, \forall E_k \in \text{span}(E_i, E_j)$
Exploit the structure of \(\ker(Y) \)

- **Observation III:** \(\ker(Y) \) often contains vectors \(u_\ell = e_i - e_j \) (differences of elements of the standard basis of \(\mathbb{R}^r \))

 Trivial kernel vectors

 \[
 u_\ell = (0, \ldots, 1, 0, \ldots, -1, 0, \ldots)^T
 \]

- Condition \(u_i^T \ln \frac{E_i \nu}{E_i \lambda} = 0 \) implies equality of two elements:

 \[
 \ln \frac{E_i \nu}{E_i \lambda} = \ln \frac{E_j \nu}{E_j \lambda}
 \]

- **Observation IV:** equality of two elements implies equality of all elements defined by linear combinations of row vectors \(E_i \) and \(E_j \)

 \[
 \ln \frac{E_i \nu}{E_i \lambda} = \ln \frac{E_j \nu}{E_j \lambda} \Rightarrow \ln \frac{E_k \nu}{E_k \lambda} = \ln \frac{E_j \nu}{E_j \lambda}, \forall E_k \in \text{span}(E_i, E_j)
 \]
Clusters J_i

- Clustering of rows of the generator matrix E:

 Cluster J_i:

 $$J_i \subseteq \{1, \ldots, r\} \text{ with } \ln \frac{E_j \nu}{E_j \lambda} = \ln \frac{E_\ell \nu}{E_\ell \lambda}, \forall j, \ell \in J_i$$

- ‘Trivial’ kernel vectors induce a clustering of fractionals that evaluate to one and the same real number κ_i:

 $$\kappa_i = \ln \frac{E_j \nu}{E_j \lambda}, \forall j \in J_i$$

- Every cluster J_i defines a nonlinear function $\psi_i(\nu, \lambda)$:

 Functions $\psi_i(\nu, \lambda)$

 $$\psi_{J_i}(\nu, \lambda) := \ln \frac{E_j \nu}{E_j \lambda}, \forall j \in J_i$$
Clusters J_i

- Clustering of **rows of the generator matrix E**:

 Cluster J_i:

 $J_i \subseteq \{1, \ldots, r\}$ with $\ln \frac{E_j \nu}{E_j \lambda} = \ln \frac{E_{\ell} \nu}{E_{\ell} \lambda}, \forall j, \ell \in J_i$

- ‘Trivial’ kernel vectors induce a **clustering of fractionals** that evaluate to one and the same **real number** κ_i:

 $$\kappa_i = \ln \frac{E_j \nu}{E_j \lambda}, \forall j \in J_i$$

- Every cluster J_i defines a **nonlinear function** $\psi_i(\nu, \lambda)$:

 Functions $\psi_i(\nu, \lambda)$

 $$\psi_{J_i}(\nu, \lambda) := \ln \frac{E_j \nu}{E_j \lambda}, \forall j \in J_i$$
Clusters J_i

- Clustering of **rows of the generator matrix** E:

$$J_i \subseteq \{1, \ldots, r\} \text{ with } \ln \frac{E_j \nu}{E_j \lambda} = \ln \frac{E_{\ell} \nu}{E_{\ell} \lambda}, \forall j, \ell \in J_i$$

- ‘Trivial’ kernel vectors induce a **clustering of fractionals** that evaluate to one and the same **real number** κ_i:

$$\kappa_i = \ln \frac{E_j \nu}{E_j \lambda}, \forall j \in J_i$$

- Every cluster J_i defines a **nonlinear function** $\psi_i(\nu, \lambda)$:

$$\psi_{J_i}(\nu, \lambda) := \ln \frac{E_j \nu}{E_j \lambda}, \forall j \in J_i$$
Clusters \(J_i \)

- Every cluster defines an **indicator vector** \(\pi^i \):

 Indicator vectors \(\pi^i \)

 \[
 \pi^i_j = 1, \text{ if } j \in J_i \text{ and } \pi^i_j = 0, \text{ else }
 \]

- **Consequently**: (\(\gamma \) clusters)

 ▶ Matrix: \(\Pi := [\pi^1, \ldots, \pi^\gamma] \)

 ▶ Vector-valued function: \(\Psi(\nu, \lambda) = (\psi_{J_1}, \ldots, \psi_{J_\gamma})^T \)

- **Reduction**: (based on trivial kernel vectors):

 \[
 \ln \frac{E_\nu}{E_\lambda} \in \mathbb{R}^r \text{ to } \Psi(\nu, \lambda) \in \mathbb{R}^\gamma
 \]
Clusters J_i

- Every cluster defines an indicator vector π^i:

 Indicator vectors π^i

 \[
 \pi^i_j = 1, \text{ if } j \in J_i \text{ and } \pi^i_j = 0, \text{ else}
 \]

- **Consequently:** (γ clusters)

 - Matrix: $\Pi := [\pi^1, \ldots, \pi^\gamma]$
 - Vector-valued function: $\Psi(\nu, \lambda) = (\psi_{J_1}, \ldots, \psi_{J_\gamma})^T$

- **Reduction:** (based on trivial kernel vectors):

 \[
 \ln \frac{E_\nu}{E_\lambda} \in \mathbb{R}^r \text{ to } \Psi(\nu, \lambda) \in \mathbb{R}^\gamma
 \]
Clusters J_i

- Every cluster defines an **indicator vector** π_i^j:

 Indicator vectors π_i^j

 $$\pi_i^j = 1, \text{ if } j \in J_i \text{ and } \pi_i^j = 0, \text{ else}$$

- **Consequently**: (γ clusters)

 - **Matrix**: $\Pi := [\pi^1, \ldots, \pi^\gamma]$
 - **Vector-valued function**: $\Psi(\nu, \lambda) = (\psi_{J_1}, \ldots, \psi_{J_\gamma})^T$

- **Reduction**: (based on trivial kernel vectors):

 $$\ln \frac{E_{\nu}}{E_{\lambda}} \in \mathbb{R}^r \text{ to } \Psi(\nu, \lambda) \in \mathbb{R}^\gamma$$
We have established the following equivalence

Lemma (Conradi & Flockerzi 2012)

The following are equivalent:

1. \(\exists a, b, a \neq b \ \ k > 0 \ \text{such that} \)

\[
S \ \text{diag}(k) \phi(a) = 0 \ \text{and} \ S \ \text{diag}(k) \phi(b) = 0
\]

2. \(\exists \mu \neq 0, \nu, \lambda > 0 \ \text{such that} \)

\[
Y^T \mu = \ln \frac{E \nu}{E \lambda}
\]

(\text{Transformed Equation})

3. \(\exists \mu \neq 0, \kappa \ \text{such that} \)

\[
Y^T \mu = \prod \kappa
\]

(\text{linear})

\[
\kappa \in \text{im}_+ (\Psi(\nu, \lambda))
\]

(\text{nonlinear})
Overview

1. Dynamical systems defined by mass action networks

2. Switching and multistationarity in mass action networks

3. Conditions for multistationarity
 - The polynomial system $S \text{diag}(k)\phi(a) = 0, \ S \text{diag}(k)\phi(b) = 0$
 - Adding the linear system
 - The Transformed Equation $Y^T \mu = \ln \frac{E^\nu}{E^\lambda}$
 - The nonlinear constraint $\kappa \in \text{im}_+(\Psi)$

4. Switching in the NFAT – Calcineurin system

5. Summary
Generator matrix for ERK signaling

(1) Clustering of rows based on the span of the trivial kernel vectors:
Generator matrix for ERK signaling

(2) Occurrence of ν_i, λ_i in the clusters:
Generator matrix for ERK signaling

(2) Occurrence of ν_i, λ_i in the clusters:

Definition (Isolation Property)

A pair (ν_j, λ_j) has the Isolation Property, if it is used in exactly one function $\psi_{J_i}(\nu, \lambda)$.
Generator matrix for ERK signaling

(2) Occurrence of ν_i, λ_i in the clusters:

|\begin{array}{ccccccc}
1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}|

Definition (Isolation Property)

A pair (ν_j, λ_j) has the *Isolation Property*, if it is used in exactly one function $\psi_{J_i}(\nu, \lambda)$.

Definition (Bridging Property)

A pair (ν_j, λ_j) has the *Bridging Property*, if it is used in exactly two functions $\psi_{J_{i1}}(\nu, \lambda)$ and $\psi_{J_{i2}}(\nu, \lambda)$.
Lemma (Conradi & Flockerzi 2012)

If all ν_i, λ_i have the **Isolation Property** then

- $\text{im}_+ (\Psi) \equiv R^n \iff$ Nonlinear constraint $\kappa \in \text{im}_+ (\Psi)$ is satisfied for every $\kappa \in R^n$

- Only need **nontrivial solutions** to the linear system:

$$ Y^T \mu = \prod \kappa $$

Lemma (Conradi & Flockerzi 2012)

If all \(\nu_i, \lambda_i \) have the **Isolation Property** then

- \(\text{im}_+ (\Psi) \equiv \mathbb{R}^\gamma \iff \text{Nonlinear constraint} \ \kappa \in \text{im}_+ (\Psi) \) is satisfied for every \(\kappa \in \mathbb{R}^\gamma \)
- Only need **nontrivial solutions** to the linear system:
 \[
 Y^T \mu = \Pi \kappa
 \]

Theorem (Conradi & Flockerzi 2012)

If all \(\nu_i, \lambda_i \) have either the **Isolation** or the **Bridging Property**, then

- \(\kappa \in \text{im}_+ (\Psi) \iff \text{feasibility of linear} \ \kappa\text{-inequalities} \)
- Only need **nontrivial solutions** to the **augmented** linear system:
 \[
 Y^T \mu = \Pi \kappa, \ A \kappa > 0
 \]

Overview

1. Dynamical systems defined by mass action networks
2. Switching and multistationarity in mass action networks
3. Conditions for multistationarity
 - The polynomial system $S \text{diag}(k)\phi(a) = 0, S \text{diag}(k)\phi(b) = 0$
 - Adding the linear system
 - The Transformed Equation $Y^T \mu = \ln \frac{E_\nu}{E_\lambda}$
 - The nonlinear constraint $\kappa \in \text{im}_+ (\Psi)$
4. Switching in the NFAT – Calcineurin system
5. Summary
The NFAT – Calcineurin system

- NFAT (Nuclear Factor of Activated T-cells): family of (five) transcription factors
- Play an important role in immune response
- Assist DNA binding (various transcription factors)

Localization

- Localized in nucleus and cytoplasm
- Localization is determined by $n = 13$ phosphorylation sites:
 1. Unphosphorylated NFAT imported to the nucleus (phosphatase
 2. Fully phosphorylated NFAT is exported to the cytoplasm
Mass action network describing phosphorylation and nuclear import/export

Goal: Consequences of multistationarity in the phosphorylation networks (K. Holstein)

- Two phosphorylation networks with $n = 13$
- Cytoplasm ($A^{(C)}$) & nucleus ($A^{(N)}$)
- Nuclear import/export reactions

Two step approach:
1. Multistationarity in the phosphorylation network
2. Coupling by import/export reactions
Phosphorylation in the cytoplasm:

\[
A^{(C)} + E_1 \overset{k_1}{\underset{k_2}{\rightleftharpoons}} A^{(C)} E_1 \rightarrow A_p^{(C)} + E_1 \quad \rightarrow \quad A_{pp}^{(C)} + E_1 \quad \rightarrow \quad \cdots \quad A_{(n-1)p}^{(C)} + E_1 \overset{k_{6n-5}}{\underset{k_{6n-4}}{\rightleftharpoons}} A_{(n-1)p}^{(C)} E_1 \rightarrow A_{np}^{(C)} + E_1 \\
A_{np}^{(C)} + E_2 \overset{k_{6n-2}}{\underset{k_{6n-1}}{\rightleftharpoons}} A_{np}^{(C)} E_2 \rightarrow A_{(n-1)p}^{(C)} + E_1 \quad \rightarrow \quad A_{pp}^{(C)} + E_2 \overset{k_{10}}{\rightleftharpoons} A_{pp}^{(C)} E_2 \rightarrow A_p^{(C)} + E_2 \rightarrow A_{np}^{(C)} + E_2
\]

Nuclear import/export:

\[
A^{(C)} \overset{k_{in}}{\rightarrow} A^{(N)} \\
A_{np}^{(N)} \overset{k_{out}}{\rightarrow} A_{np}^{(C)}
\]

Phosphorylation in the nucleus:

\[
A^{(N)} + E_1 \overset{k_1}{\underset{k_2}{\rightleftharpoons}} A^{(N)} E_1 \rightarrow A_p^{(N)} + E_1 \quad \overset{k_7}{\underset{k_8}{\rightleftharpoons}} A_p^{(N)} E_1 \rightarrow A_{pp}^{(N)} + E_1 \quad \rightarrow \quad \cdots \quad A_{(n-1)p}^{(N)} + E_1 \overset{k_{6n-5}}{\underset{k_{6n-4}}{\rightleftharpoons}} A_{(n-1)p}^{(N)} E_1 \rightarrow A_{np}^{(N)} + E_1 \\
A_{np}^{(N)} + E_2 \overset{k_{6n-2}}{\underset{k_{6n-1}}{\rightleftharpoons}} A_{np}^{(N)} E_2 \rightarrow A_{(n-1)p}^{(N)} + E_1 \quad \rightarrow \quad A_{pp}^{(N)} + E_2 \overset{k_{10}}{\rightleftharpoons} A_{pp}^{(N)} E_2 \rightarrow A_p^{(N)} + E_2 \rightarrow A_{np}^{(N)} + E_2
\]
Multistationarity & switching in the phosphorylation networks

Multistationarity analysis:

1. Clustering yields $\gamma = 13$ and 13 functions $\psi_i(\nu, \lambda)$
2. All ν_i, λ_i have the Isolation Property $\Rightarrow \text{im}_+ (\Psi) \equiv R^{13}$
3. Multistationarity requires feasibility of (at least one) linear inequality system

Rate constants:

1. Solutions define rate constants
2. Obtain realistic values for the rate constants (K. Holstein)

Switching:

Numerical analysis shows bistability and hence switching for realistic parameter values
Multistationarity & switching in the phosphorylation networks

- **Multistationarity analysis:**

 1. Clustering yields $\gamma = 13$ and 13 functions $\psi_i(\nu, \lambda)$
 2. All ν_i, λ_i have the Isolation Property $\Rightarrow \text{im}_+ (\Psi) \equiv \mathbb{R}^{13}$
 3. Multistationarity requires feasibility of (at least one) linear inequality system

- **Rate constants:**

 1. Solutions define **rate constants**
 2. Obtain **realistic values** for the rate constants (K. Holstein)

- **Switching:**

 Numerical analysis shows bistability and hence switching for realistic parameter values
Multistationarity & switching in the phosphorylation networks

Multistationarity analysis:

1. Clustering yields $\gamma = 13$ and 13 functions $\psi_i(\nu, \lambda)$
2. All ν_i, λ_i have the Isolation Property $\Rightarrow \text{im}_+ (\Psi) \equiv \mathbb{R}^{13}$
3. Multistationarity requires feasibility of (at least one) linear inequality system

Rate constants:

1. Solutions define rate constants
2. Obtain realistic values for the rate constants (K. Holstein)

Switching:

Numerical analysis shows bistability and hence switching for realistic parameter values
Multistationarity & switching in the simple NFAT – Calcineurin model

- **Multistationarity analysis:**

 IFT (for ϵ sufficiently small)

 1. Multistationarity in the phosphorylation networks \Rightarrow multistationarity in the complete network
 2. Multistationarity in the positive orthant, if rate constants describing nuclear import and export satisfy:

 \[
 \frac{k_{out}}{k_{in}} = \frac{[A^c]_{ss}}{[A^{13P}]_{ss}}
 \]

- **Switching:**

 Numerical analysis shows bistability and hence switching for realistic parameter values
Multistationarity & switching in the simple NFAT – Calcineurin model

- **Multistationarity analysis:**

<table>
<thead>
<tr>
<th>IFT (for ϵ sufficiently small)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Multistationarity in the phosphorylation networks \Rightarrow multistationarity in the complete network</td>
</tr>
<tr>
<td>2. Multistationarity in the positive orthant, if rate constants describing nuclear import and export satisfy:</td>
</tr>
<tr>
<td>$\frac{k_{out}}{k_{in}} = \frac{[A_c]{ss}}{[A{13P}]_{ss}}$</td>
</tr>
</tbody>
</table>

- **Switching:**

 Numerical analysis shows bistability and hence switching for realistic parameter values
Overview

1. Dynamical systems defined by mass action networks
2. Switching and multistationarity in mass action networks
3. Conditions for multistationarity
 - The polynomial system $S \text{diag}(k)\phi(a) = 0$, $S \text{diag}(k)\phi(b) = 0$
 - Adding the linear system
 - The Transformed Equation $Y^T \mu = \ln \frac{E^\nu}{E^\lambda}$
 - The nonlinear constraint $\kappa \in \text{im}_+(\Psi)$
4. Switching in the NFAT – Calcineurin system
5. Summary
Summary

- **Multistationarity:**

 positive a, b and k with $S \ \text{diag}(k) \ \phi(a) = 0$, $S \ \text{diag}(k) \ \phi(b) = 0$ and $Z^T a = Z^T b$

- **Transformation:**

 $\mu = \ln \frac{b}{a}$, $b = \text{diag} \left(e^{\mu} \right) \ a$

- **Reparametrization over $\ker(S) \cap \mathbb{R}^r_{\geq 0}:$**

 Transformed Equation

 $Y^T \mu = \ln \frac{E^\nu}{E^\lambda}$

- **Equivalently (Fredholm):**

 $Y^T \mu = \prod \kappa$, $\kappa \in \text{im}_+ (\Psi)$
Feasibility of nonlinear $\kappa \in \text{im}_+ (\Psi)$:

(A) If all ν_i, λ_i have the Isolation Property: $\text{im}_+ (\Psi) \equiv \mathbb{R}^\gamma$

(B) If all ν_i, λ_i have either the Isolation Property or the Bridging Property: $\kappa \in \text{im}_+ (\Psi) \iff A \kappa > 0$

- In both cases establishing multistationarity requires only linear algebra computations!

Applied these results to study the consequences of multistationarity in the NFAT – Calcineurin system
Acknowledgments

MPI Magdeburg, Systems- & Control Theory
Dietrich Flockerzi and Katharina Holstein

Publication
Acknowledgments

MPI Magdeburg, Systems- & Control Theory
Dietrich Flockerzi and Katharina Holstein

Publication

Thank you for your attention!!