Robust Maximization of Asymptotic Growth under Covariance Uncertainty

Yu-Jui Huang

Joint work with Erhan Bayraktar
University of Michigan, Ann Arbor

SIAM Conference on Financial Mathematics and Engineering
Minneapolis
July 9, 2012
Uncertainty in covariance (or, equivalently, in variance) has been drawing increasing attention.

Most of the literature focuses on the superhedging problem.

We study something different: robust growth-optimal trading.

The Question

How to maximize the growth rate of one’s wealth when precise covariance structure of the underlying assets is not known?
Let $E \subset \mathbb{R}^d$ be an open connected set (e.g., “positive octant”), and S^d be the set of $d \times d$ symmetric matrices.

- X: price process of d assets taking values in E.
- $\theta, \Theta : E \mapsto (0, \infty)$ are functions in $C^{0,\alpha}_{\text{loc}}(E)$ with $\theta < \Theta$ in E.
- C: set of C^1 functions $c : E \mapsto S^d$ s.t.

$$\theta(x)I_d \leq c(x) \leq \Theta(x)I_d, \text{ for all } x \in E. \quad (1)$$

Each $c \in C$ is a covariance structure that might materialize.
If $c \in C$ is a priori given, we define

$(L^{c(\cdot)}f)(x) := \frac{1}{2} \sum_{i,j=1}^{d} c_{ij}(x) \frac{\partial^2 f}{\partial x_i \partial x_j}(x) = \frac{1}{2} \text{Tr}[c(x)D^2 f(x)]$.

Q^c: the solution to the (generalized) martingale problem on E for the operator $L^{c(\cdot)}$.

$\Pi^c := \{ \mathbb{P} \mid \mathbb{P} \ll_{\text{loc}} Q^c, \text{X doesn't explode } \mathbb{P}-\text{a.s.} \}$.

[dominated by Q^c; drift uncertainty]

In this paper, we consider

$\Pi := \bigcup_{c \in C} \Pi^c$.

[Non-dominated; covariance uncertainty]
We say $\pi \in \mathcal{V}$ is an **admissible trading strategy** if it is a predictable process s.t.

- π is X-integrable under Q^c, for all $c \in C$;
- $V^\pi_t := 1 + \int_0^t \pi'_s dX_s > 0$ Q^c-a.s., for all $c \in C$ and $t \geq 0$.

The **asymptotic growth rate** of V^π under P is defined as

$$g(\pi; P) := \sup \left\{ \gamma \in \mathbb{R} \left| \liminf_{t \to \infty} \frac{\log V^\pi_t}{t} \geq \gamma \right. \right\}.$$

($\approx \sup \left\{ \gamma \in \mathbb{R} \mid V^\pi_t \geq e^{\gamma t} \text{ as } t \text{ large } P\text{-a.s.} \right\}$)
Our Goal

Choose a $\pi^* \in \mathcal{V}$ s.t. $\mathcal{V}\pi^*$ attains the growth rate

$$\sup_{\pi \in \mathcal{V}} \inf_{P \in \Pi} g(\pi; P)$$

under all P in Π (or at least in a large enough subset Π^* of Π).

We call $\sup_{\pi \in \mathcal{V}} \inf_{P \in \Pi} g(\pi; P)$ the robust maximal asymptotic growth rate, which can be considered as the maximal worst-case asymptotic growth rate.
Kardaras & Robertson (2012): for any $D \subset E$ and $\lambda \in \mathbb{R}$, consider

$$H_{\lambda}^c(D) := \{ \eta \in C^2(D) \mid L^c(\cdot)\eta + \lambda \eta = 0, \eta > 0 \text{ in } D \},$$

and define the \textit{principal eigenvalue} for $L^c(\cdot)$ on D as

$$\lambda^{*,c}(D) := \sup\{ \lambda \in \mathbb{R} \mid H_{\lambda}^c(D) \neq \emptyset \}.$$
When \(c \in \mathcal{C} \) is a priori given...

Theorem [Kardaras & Robertson (2012)]

Take \(\eta^{*,c} \in H^c_{\lambda^{*,c}(E)}(E) \) and define

\[
\Pi^{*,c} := \left\{ \mathbb{P} \in \Pi^c \left| \mathbb{P}-\liminf_{t \to \infty} \frac{\log \eta^{*,c}(X_t)}{t} \geq 0 \mathbb{P}-\text{a.s.} \right. \right\}.
\]

Then we have

- \(\Pi^{*,c} \) includes all the measures in \(\Pi^c \) under which \(X \) is stable.
- \(\lambda^{*,c}(E) = \sup_{\pi \in \mathcal{V}} \inf_{\mathbb{P} \in \Pi^{*,c}} g(\pi; \mathbb{P}) = \inf_{\mathbb{P} \in \Pi^{*,c}} \sup_{\pi \in \mathcal{V}} g(\pi; \mathbb{P}). \)
- \(\pi^{*,c}_t := e^{\lambda^{*,c}(E)t} \nabla \eta^{*,c}(X_t) \in \mathcal{V} \) satisfies

\[
g(\pi^{*,c}; \mathbb{P}) \geq \lambda^{*,c}(E), \quad \forall \mathbb{P} \in \Pi^{*,c}.
\]
When $c \in C$ is NOT given...

What operator should we use?

- When $c \in C$ is fixed, we use $L_c(\eta)(x) = \frac{1}{2} \text{Tr}[c(x)D^2\eta(x)]$.
- When $c \in C$ is NOT fixed, the appropriate operator could be

$$F(x, D^2\eta(x)) := \frac{1}{2} \sup_{A \in A(\theta(x), \Theta(x))} \text{Tr}[A D^2\eta(x)],$$

where $A(\lambda, \Lambda)$ denotes the set of matrices in S^d with eigenvalues lying in $[\lambda, \Lambda]$.

The operator F is a variant of Pucci’s extremal operator

$$\mathcal{M}^+_{\lambda, \Lambda}(M) := \sup_{A \in A(\lambda, \Lambda)} \text{Tr}(AM), \quad \forall \ M \in S^d,$$

where $0 < \lambda \leq \Lambda$ are some fixed constants.
When $c \in \mathcal{C}$ is NOT given...

For any $D \subset E$ and $\lambda \in \mathbb{R}$, we consider

$$H_\lambda(D) := \{ \eta \in C^2(D) \mid F(x, D^2\eta) + \lambda \eta \leq 0, \; \eta > 0 \text{ in } D \},$$

and define the principal eigenvalue for F on D as

$$\lambda^*(D) := \sup\{ \lambda \in \mathbb{R} \mid H_\lambda(D) \neq \emptyset \}.$$
When $c \in C$ is NOT given...

"arguments in KR12" + "$\lambda^*(E) = \inf_{c \in C} \lambda^{*,c}(E)$" =

Theorem

Take $\eta^* \in H_{\lambda^*(E)}(E)$. Define

$$\pi^*_t := e^{\lambda^*(E)t} \nabla \eta^*(X_t) \quad \forall \ t \geq 0,$$

and set

$$\Pi^* := \left\{ \mathbb{P} \in \Pi \mid \mathbb{P}-\lim_{t \to \infty} \inf_{t \geq 0} \mathbb{P}-a.s. \log \eta^*(X_t) \geq 0 \right\}.$$

Then, we have

- Π^* includes all the measures in Π under which X is stable.
- $\lambda^*(E) = \sup_{\pi \in \mathcal{V}} \inf_{\mathbb{P} \in \Pi^*} g(\pi; \mathbb{P}) = \inf_{\mathbb{P} \in \Pi^*} \sup_{\pi \in \mathcal{V}} g(\pi; \mathbb{P}).$
- $\pi^* \in \mathcal{V}$ and $g(\pi^*; \mathbb{P}) \geq \lambda^*(E)$ for all $\mathbb{P} \in \Pi^*$.
Assume: there exist \(\{E_n\}_{n \in \mathbb{N}} \) of bounded open convex subsets of \(E \) s.t. \(\partial E_n \) is of \(C^{2,\alpha} \), \(\overline{E}_n \subset E_{n+1} \ \forall \ n \in \mathbb{N} \), and \(E = \bigcup_{n=1}^{\infty} E_n \).
Sketch of proof:

1. On each E_n, find a positive viscosity solution η_n (using Quaas & Sirakov (2008)) to

\[F(x, D^2\eta_n) + \lambda^*(E_n)\eta_n \leq 0. \tag{2} \]

2. Show that η_n is actually smooth (using Safonov (1988)).

3. Show $\lambda^*(E_n) = \inf_{c \in C} \lambda^{*,c}(E_n)$.

 (I) \leq: Use a maximum principle related to F.

 (II) \geq: Find $\{c_m\}_{m \in \mathbb{N}}$ of measurable functions satisfying (1) s.t.

 \[\lambda^*(E_n) \geq \liminf_{m \to \infty} \lambda^{*,c_m}(E_n). \tag{3} \]

Use “continuous selection” in Brown (1989) to construct $\{c'_m\}_{m \in \mathbb{N}}$ of continuous functions satisfying (1) s.t. (3) holds (smoothness of η_n needed). Mollifying $\{c'_m\}_{m \in \mathbb{N}}$, get $\{c''_m\}_{m \in \mathbb{N}} \subset C$ s.t. (3) holds.
Proving \(\lambda^*(E) = \inf_{c \in C} \lambda^{*,c}(E) \)

4. Show \(\lambda^*(E) = \lambda_0 := \lim_{n \to \infty} \lambda^*(E_n) \).

 (I) \(\leq \): obvious from definitions.

 (II) \(\geq \): Prove a Harnack inequality for \(F \), which implies \(\eta_n \to \eta^* \) uniformly on \(E \). This and (2) yields

 \[F(x, D^2 \eta^*) + \lambda_0 \eta^* \leq 0. \]

By Safonov (1988) again, \(\eta^* \) is smooth. Thus, conclude \(\eta^* \in H_{\lambda_0}(E) \), which gives \(\lambda^*(E) \geq \lambda_0 \).

5. Since \(\lambda^{*,c}(E) = \inf_{n \in \mathbb{N}} \lambda^{*,c}(E_n) \) for any \(BL \ c \in C \) (Pinsky (1995)),

 \[
 \inf_{c \in C} \lambda^{*,c}(E) = \inf_{c \in C} \inf_{n \in \mathbb{N}} \lambda^{*,c}(E_n) = \inf_{n \in \mathbb{N}} \inf_{c \in C} \lambda^{*,c}(E_n) = \inf_{n \in \mathbb{N}} \lambda^*(E_n) = \lambda^*(E).
 \]
Among an appropriate class \mathcal{C} of covariance structures, we characterize the **largest possible robust asymptotic growth rate** as the principle eigenvalue $\lambda^*(E)$ of the fully nonlinear elliptic operator F, and identify the **robust trading strategy** in terms of $\lambda^*(E)$ and **the associated eigenfunction**.

The covariance uncertainty we consider is similar to the **“Knightian uncertainty”** formulated in Fernholz & Karatzas (2011), in the sense that the constraint on covariance is Markovian. The latter, however, is more general as it allows **the covariance itself to be non-Markovian**. Can we generalize our results to the case with non-Markovian covariances?

Thank you very much for your attention!
Q & A