Dynamic Trading Volume

Paolo Guasoni\(^1,2\) Marko Weber\(^2,3\)

Boston University\(^1\)

Dublin City University\(^2\)

Scuola Normale Superiore\(^3\)

SIAM Conference in Financial Mathematics and Engineering
Minneapolis, July 11\(^{th}\), 2012
- Geometric Brownian Motion: basic stochastic process for price. Since Samuelson, Black and Scholes, Merton.
- Basic stochastic process for volume?
• Geometric Brownian Motion: basic stochastic process for price. Since Samuelson, Black and Scholes, Merton.
• Basic stochastic process for volume?
Unsettling Answers

- **Volume**: rate of change in total quantities traded.
- All these models: no frictions.
- Transaction costs, exogenous prices. After Constantinides (1986). Volume finite as time-average. Either zero (no trade region) or infinite (trading boundaries).
Unsettling Answers

- Volume: rate of change in total quantities traded.
- All these models: no frictions.
- Transaction costs, exogenous prices. After Constantinides (1986). Volume finite as time-average. Either zero (no trade region) or infinite (trading boundaries).
Unsettling Answers

- Volume: rate of change in total quantities traded.
- All these models: no frictions.
- Transaction costs, exogenous prices. After Constantinides (1986). Volume finite as time-average. Either zero (no trade region) or infinite (trading boundaries).
Unsettling Answers

- Volume: rate of change in total quantities traded.
- All these models: no frictions.
- Transaction costs, exogenous prices. After Constantinides (1986). Volume finite as time-average. Either zero (no trade region) or infinite (trading boundaries).
Unsettling Answers

- Volume: rate of change in total quantities traded.
- All these models: no frictions.
- Transaction costs, exogenous prices. After Constantinides (1986). Volume finite as time-average. Either zero (no trade region) or infinite (trading boundaries).
Unsettling Answers

- Volume: rate of change in total quantities traded.
- All these models: no frictions.
- Transaction costs, exogenous prices. After Constantinides (1986). Volume finite as time-average. Either zero (no trade region) or infinite (trading boundaries).
This Talk

• **Question:** if price is geometric Brownian Motion, what is the process for volume?

• **Inputs**
 - Price exogenous. Geometric Brownian Motion.
 - Representative agent.
 - Constant relative risk aversion and long horizon.
 - Friction. Execution price linear in volume.

• **Outputs**
 - Stochastic process for trading volume.
 - Optimal trading policy and welfare.
 - Small friction asymptotics explicit.
This Talk

• Question:
 if price is geometric Brownian Motion, what is the process for volume?

• Inputs
 • Price exogenous. Geometric Brownian Motion.
 • Representative agent.
 Constant relative risk aversion and long horizon.
 • Friction. Execution price linear in volume.

• Outputs
 • Stochastic process for trading volume.
 • Optimal trading policy and welfare.
 • Small friction asymptotics explicit.
This Talk

• Question:
 if price is geometric Brownian Motion, what is the process for volume?

• Inputs
 • Price exogenous. Geometric Brownian Motion.
 • Representative agent.
 • Constant relative risk aversion and long horizon.
 • Friction. Execution price linear in volume.

• Outputs
 • Stochastic process for trading volume.
 • Optimal trading policy and welfare.
 • Small friction asymptotics explicit.
This Talk

- Question:
 if price is geometric Brownian Motion, what is the process for volume?

- Inputs
 - Price exogenous. Geometric Brownian Motion.
 - Representative agent.
 Constant relative risk aversion and long horizon.
 - Friction. Execution price linear in volume.

- Outputs
 - Stochastic process for trading volume.
 - Optimal trading policy and welfare.
 - Small friction asymptotics explicit.
Question:
if price is geometric Brownian Motion, what is the process for volume?

Inputs
- Price exogenous. Geometric Brownian Motion.
- Representative agent. Constant relative risk aversion and long horizon.
- Friction. Execution price linear in volume.

Outputs
- Stochastic process for trading volume.
- Optimal trading policy and welfare.
- Small friction asymptotics explicit.
This Talk

- **Question:**
 if price is geometric Brownian Motion, what is the process for volume?

- **Inputs**
 - Price exogenous. Geometric Brownian Motion.
 - Representative agent.
 - Constant relative risk aversion and long horizon.
 - Friction. Execution price linear in volume.

- **Outputs**
 - Stochastic process for trading volume.
 - Optimal trading policy and welfare.
 - Small friction asymptotics explicit.
This Talk

- **Question:**
 if price is geometric Brownian Motion, what is the process for volume?

- **Inputs**
 - Price exogenous. Geometric Brownian Motion.
 - Representative agent.
 Constant relative risk aversion and long horizon.
 - Friction. Execution price linear in volume.

- **Outputs**
 - Stochastic process for trading volume.
 - Optimal trading policy and welfare.
 - Small friction asymptotics explicit.
This Talk

• Question: if price is geometric Brownian Motion, what is the process for volume?

• Inputs
 • Price exogenous. Geometric Brownian Motion.
 • Representative agent. Constant relative risk aversion and long horizon.
 • Friction. Execution price linear in volume.

• Outputs
 • Stochastic process for trading volume.
 • Optimal trading policy and welfare.
 • Small friction asymptotics explicit.
This Talk

• Question:
 if price is geometric Brownian Motion, what is the process for volume?

• Inputs
 • Price exogenous. Geometric Brownian Motion.
 • Representative agent. Constant relative risk aversion and long horizon.
 • Friction. Execution price linear in volume.

• Outputs
 • Stochastic process for trading volume.
 • Optimal trading policy and welfare.
 • Small friction asymptotics explicit.
Market

- Brownian Motion \((W_t)_{t \geq 0}\) with natural filtration \((\mathcal{F}_t)_{t \geq 0}\).

- Best quoted price of risky asset. Price for an infinitesimal trade.

\[
\frac{dS_t}{S_t} = \mu dt + \sigma dW_t
\]

- Trade \(\Delta \theta\) shares over time interval \(\Delta t\). Order filled at price

\[
\tilde{S}_t(\Delta \theta) := S_t \left(1 + \lambda \frac{S_t \Delta \theta}{X_t \Delta t}\right)
\]

where \(X_t\) is investor’s wealth.

- \(\lambda\) measures illiquidity. \(1/\lambda\) market depth. Like Kyle’s (1985) lambda.

- Price worse for larger quantity \(|\Delta \theta|\) or shorter execution time \(\Delta t\). Price linear in quantity, inversely proportional to execution time.

- Same amount \(S_t \Delta \theta\) has lower impact if investor’s wealth larger.

- Makes model scale-invariant. Doubling wealth, and all subsequent trades, doubles final payoff exactly.
Market

- Brownian Motion \((W_t)_{t \geq 0}\) with natural filtration \((\mathcal{F}_t)_{t \geq 0}\).
- *Best quoted* price of risky asset. Price for an infinitesimal trade.

\[
\frac{dS_t}{S_t} = \mu dt + \sigma dW_t
\]

- Trade \(\Delta \theta\) shares over time interval \(\Delta t\). Order filled at price

\[
\tilde{S}_t(\Delta \theta) := S_t \left(1 + \lambda \frac{S_t \Delta \theta}{X_t \Delta t} \right)
\]

where \(X_t\) is investor’s wealth.
- \(\lambda\) measures illiquidity. \(1/\lambda\) market depth. Like Kyle’s (1985) lambda.
- Price worse for larger quantity \(|\Delta \theta|\) or shorter execution time \(\Delta t\). Price linear in quantity, inversely proportional to execution time.
- Same amount \(S_t \Delta \theta\) has lower impact if investor’s wealth larger.
- Makes model scale-invariant. Doubling wealth, and all subsequent trades, doubles final payoff exactly.
Market

- Brownian Motion \((W_t)_{t\geq 0}\) with natural filtration \((\mathcal{F}_t)_{t\geq 0}\).
- *Best quoted* price of risky asset. Price for an infinitesimal trade.

\[
\frac{dS_t}{S_t} = \mu dt + \sigma dW_t
\]

- Trade \(\Delta \theta\) shares over time interval \(\Delta t\). Order filled at price

\[
\tilde{S}_t(\Delta \theta) := S_t \left(1 + \lambda \frac{S_t \Delta \theta}{X_t \Delta t}\right)
\]

where \(X_t\) is investor’s wealth.

- \(\lambda\) measures illiquidity. \(1/\lambda\) market depth. Like Kyle’s (1985) lambda.
- Price worse for larger quantity \(|\Delta \theta|\) or shorter execution time \(\Delta t\). Price linear in quantity, inversely proportional to execution time.
- Same amount \(S_t \Delta \theta\) has lower impact if investor’s wealth larger.
- Makes model scale-invariant. Doubling wealth, and all subsequent trades, doubles final payoff exactly.
Market

- Brownian Motion \((W_t)_{t \geq 0}\) with natural filtration \((\mathcal{F}_t)_{t \geq 0}\).
- **Best quoted** price of risky asset. Price for an infinitesimal trade.

\[
\frac{dS_t}{S_t} = \mu dt + \sigma dW_t
\]

- Trade \(\Delta \theta\) shares over time interval \(\Delta t\). Order filled at price

\[
\tilde{S}_t(\Delta \theta) := S_t \left(1 + \lambda \frac{S_t \Delta \theta}{X_t \Delta t}\right)
\]

where \(X_t\) is investor’s wealth.

- \(\lambda\) measures illiquidity. \(1/\lambda\) market depth. Like Kyle’s (1985) lambda.
- Price worse for larger quantity \(|\Delta \theta|\) or shorter execution time \(\Delta t\). Price linear in quantity, inversely proportional to execution time.
- Same amount \(S_t \Delta \theta\) has lower impact if investor’s wealth larger.
- Makes model scale-invariant. Doubling wealth, and all subsequent trades, doubles final payoff exactly.
Market

- Brownian Motion \((W_t)_{t \geq 0}\) with natural filtration \((\mathcal{F}_t)_{t \geq 0}\).
- *Best quoted* price of risky asset. Price for an infinitesimal trade.

\[
\frac{dS_t}{S_t} = \mu dt + \sigma dW_t
\]

- Trade \(\Delta \theta\) shares over time interval \(\Delta t\). Order filled at price

\[
\tilde{S}_t(\Delta \theta) := S_t \left(1 + \lambda \frac{S_t \Delta \theta}{X_t \Delta t}\right)
\]

where \(X_t\) is investor’s wealth.

- \(\lambda\) measures illiquidity. \(1/\lambda\) market depth. Like Kyle’s (1985) lambda.
- Price worse for larger quantity \(|\Delta \theta|\) or shorter execution time \(\Delta t\). Price linear in quantity, inversely proportional to execution time.
- Same amount \(S_t \Delta \theta\) has lower impact if investor’s wealth larger.
- Makes model scale-invariant. Doubling wealth, and all subsequent trades, doubles final payoff exactly.
Market

- Brownian Motion \((W_t)_{t \geq 0}\) with natural filtration \((\mathcal{F}_t)_{t \geq 0}\).
- *Best quoted* price of risky asset. Price for an infinitesimal trade.
 \[
 \frac{dS_t}{S_t} = \mu dt + \sigma dW_t
 \]
- Trade \(\Delta \theta\) shares over time interval \(\Delta t\). Order filled at price
 \[
 \tilde{S}_t(\Delta \theta) := S_t \left(1 + \lambda \frac{S_t \Delta \theta}{X_t \Delta t}\right)
 \]
 where \(X_t\) is investor’s wealth.
- \(\lambda\) measures illiquidity. \(1/\lambda\) market depth. Like Kyle’s (1985) lambda.
- Price worse for larger quantity \(|\Delta \theta|\) or shorter execution time \(\Delta t\).
 Price linear in quantity, inversely proportional to execution time.
- Same amount \(S_t \Delta \theta\) has lower impact if investor’s wealth larger.
- Makes model scale-invariant.
 Doubling wealth, and all subsequent trades, doubles final payoff exactly.
Market

- Brownian Motion \((W_t)_{t \geq 0}\) with natural filtration \((\mathcal{F}_t)_{t \geq 0}\).
- *Best quoted* price of risky asset. Price for an infinitesimal trade.
 \[
 \frac{dS_t}{S_t} = \mu dt + \sigma dW_t
 \]

- Trade \(\Delta \theta\) shares over time interval \(\Delta t\). Order filled at price
 \[
 \tilde{S}_t(\Delta \theta) := S_t \left(1 + \lambda \frac{S_t\Delta \theta}{X_t\Delta t}\right)
 \]
 where \(X_t\) is investor’s wealth.
- \(\lambda\) measures illiquidity. \(1/\lambda\) market depth. Like Kyle’s (1985) lambda.
- Price worse for larger quantity \(|\Delta \theta|\) or shorter execution time \(\Delta t\).
 Price linear in quantity, inversely proportional to execution time.
- Same amount \(S_t\Delta \theta\) has lower impact if investor’s wealth larger.
- Makes model scale-invariant.
 Doubling wealth, and all subsequent trades, doubles final payoff exactly.
Alternatives?

- Alternatives: quantities $\Delta \theta$, or share turnover $\Delta \theta / \theta$. Consequences?
 - Quantities ($\Delta \theta$):
 \[
 \tilde{S}_t(\Delta \theta) := S_t + \lambda \frac{\Delta \theta}{\Delta t}
 \]
 - Price impact independent of price. Not invariant to stock splits!
 - Suitable for short horizons (liquidation) or mean-variance criteria.
 - Share turnover:
 Stationary measure of trading volume (Lo and Wang, 2000). Observable.
 \[
 \tilde{S}_t(\Delta \theta) := S_t \left(1 + \lambda \frac{\Delta \theta}{\theta_t \Delta t} \right)
 \]
 - Problematic. Infinite price impact with cash position.
Alternatives?

- Alternatives: quantities $\Delta \theta$, or share turnover $\Delta \theta / \theta$. Consequences?
- Quantities ($\Delta \theta$):

$$\tilde{S}_t(\Delta \theta) := S_t + \lambda \frac{\Delta \theta}{\Delta t}$$

- Price impact independent of price. Not invariant to stock splits!
- Suitable for short horizons (liquidation) or mean-variance criteria.
- Share turnover:
 Stationary measure of trading volume (Lo and Wang, 2000). Observable.

$$\tilde{S}_t(\Delta \theta) := S_t \left(1 + \lambda \frac{\Delta \theta}{\theta_t \Delta t} \right)$$

- Problematic. Infinite price impact with cash position.
Alternatives?

- Alternatives: quantities $\Delta \theta$, or share turnover $\Delta \theta/\theta$. Consequences?
- Quantities ($\Delta \theta$):

$$\tilde{S}_t(\Delta \theta) := S_t + \lambda \frac{\Delta \theta}{\Delta t}$$

- Price impact independent of price. Not invariant to stock splits!
- Suitable for short horizons (liquidation) or mean-variance criteria.
- Share turnover:
 Stationary measure of trading volume (Lo and Wang, 2000). Observable.

$$\tilde{S}_t(\Delta \theta) := S_t \left(1 + \lambda \frac{\Delta \theta}{\theta_t \Delta t}\right)$$

- Problematic. Infinite price impact with cash position.
Alternatives?

- Alternatives: quantities $\Delta \theta$, or share turnover $\Delta \theta / \theta$. Consequences?
- Quantities ($\Delta \theta$):

$$
\tilde{S}_t(\Delta \theta) := S_t + \lambda \frac{\Delta \theta}{\Delta t}
$$

- Price impact independent of price. Not invariant to stock splits!
- Suitable for short horizons (liquidation) or mean-variance criteria.
- Share turnover:
 Stationary measure of trading volume (Lo and Wang, 2000). Observable.

$$
\tilde{S}_t(\Delta \theta) := S_t \left(1 + \lambda \frac{\Delta \theta}{\theta_t \Delta t} \right)
$$

- Problematic. Infinite price impact with cash position.
Alternatives?

- Alternatives: quantities $\Delta \theta$, or share turnover $\Delta \theta / \theta$. Consequences?
- Quantities ($\Delta \theta$):

$$\tilde{S}_t(\Delta \theta) := S_t + \lambda \frac{\Delta \theta}{\Delta t}$$

- Price impact independent of price. Not invariant to stock splits!
- Suitable for short horizons (liquidation) or mean-variance criteria.
- Share turnover:
 Stationary measure of trading volume (Lo and Wang, 2000). Observable.

$$\tilde{S}_t(\Delta \theta) := S_t \left(1 + \lambda \frac{\Delta \theta}{\theta_t \Delta t} \right)$$

- Problematic. Infinite price impact with cash position.
Alternatives?

- Alternatives: quantities $\Delta \theta$, or share turnover $\Delta \theta / \theta$. Consequences?
- Quantities ($\Delta \theta$):

$$\tilde{S}_t(\Delta \theta) := S_t + \lambda \frac{\Delta \theta}{\Delta t}$$

- Price impact independent of price. Not invariant to stock splits!
- Suitable for short horizons (liquidation) or mean-variance criteria.
- Share turnover:
 Stationary measure of trading volume (Lo and Wang, 2000). Observable.

$$\tilde{S}_t(\Delta \theta) := S_t \left(1 + \lambda \frac{\Delta \theta}{\theta_t \Delta t} \right)$$

- Problematic. Infinite price impact with cash position.
Wealth and Portfolio

- Continuous trading: execution price $\tilde{S}_t(\dot{\theta}_t) = S_t \left(1 + \lambda \frac{\dot{\theta}_t S_t}{X_t}\right)$, cash position

$$dC_t = -S_t \left(1 + \lambda \frac{\dot{\theta}_t S_t}{X_t}\right) d\theta_t = -S_t \left(\dot{\theta}_t + \lambda \frac{S_t}{X_t} \dot{\theta}_t^2\right) dt$$

- Trading volume as wealth turnover $u_t := \frac{\dot{\theta}_t S_t}{X_t}$. Amount traded in unit of time, as fraction of wealth.

- Dynamics for wealth $X_t := \theta_t S_t + C_t$ and risky portfolio weight $Y_t := \frac{\theta_t S_t}{X_t}$

$$\frac{dX_t}{X_t} = Y_t(\mu dt + \sigma dW_t) - \lambda u_t^2 dt$$

$$dY_t = \left(Y_t(1 - Y_t)(\mu - Y_t \sigma^2) + (u_t + \lambda Y_t u_t^2)\right) dt + \sigma Y_t(1 - Y_t) dW_t$$

- Illiquidity...

- ...reduces portfolio return $(-\lambda u_t^2)$.

 Turnover effect quadratic: quantities times price impact.

- ...increases risky weight $(\lambda Y_t u_t^2)$. Buy: pay more cash. Sell: get less cash.

 Turnover effect linear in risky weight Y_t. Vanishes for cash position.
Wealth and Portfolio

- Continuous trading: execution price \(\tilde{S}_t(\dot{\theta}_t) = S_t \left(1 + \lambda \frac{\dot{\theta}_t S_t}{X_t} \right) \), cash position

\[
dC_t = -S_t \left(1 + \lambda \frac{\dot{\theta}_t S_t}{X_t} \right) d\theta_t = -S_t \left(\dot{\theta}_t + \lambda \frac{S_t}{X_t} \dot{\theta}_t^2 \right) dt
\]

- Trading volume as wealth turnover \(u_t := \frac{\dot{\theta}_t S_t}{X_t} \).
 Amount traded in unit of time, as fraction of wealth.

- Dynamics for wealth \(X_t := \theta_t S_t + C_t \) and risky portfolio weight \(Y_t := \frac{\theta_t S_t}{X_t} \)

\[
\frac{dX_t}{X_t} = Y_t (\mu dt + \sigma dW_t) - \lambda u_t^2 dt
\]

\[
dY_t = \left(Y_t (1 - Y_t)(\mu - Y_t \sigma^2) + (u_t + \lambda Y_t u_t^2) \right) dt + \sigma Y_t (1 - Y_t) dW_t
\]

- Illiquidity...

- ...reduces portfolio return \(-\lambda u_t^2\).
 Turnover effect quadratic: quantities times price impact.

- ...increases risky weight \(\lambda Y_t u_t^2 \). Buy: pay more cash. Sell: get less cash.
 Turnover effect linear in risky weight \(Y_t \). Vanishes for cash position.
Wealth and Portfolio

- Continuous trading: execution price \(\tilde{S}_t(\dot{\theta}_t) = S_t \left(1 + \lambda \frac{\dot{\theta}_t S_t}{X_t} \right) \), cash position

\[
dC_t = -S_t \left(1 + \lambda \frac{\dot{\theta}_t S_t}{X_t} \right) d\theta_t = -S_t \left(\dot{\theta}_t + \lambda \frac{S_t}{X_t} \dot{\theta}_t^2 \right) dt
\]

- Trading volume as wealth turnover \(u_t := \frac{\dot{\theta}_t S_t}{X_t} \). Amount traded in unit of time, as fraction of wealth.

- Dynamics for wealth \(X_t := \theta_t S_t + C_t \) and risky portfolio weight \(Y_t := \frac{\theta_t S_t}{X_t} \)

\[
\frac{dX_t}{X_t} = Y_t(\mu dt + \sigma dW_t) - \lambda u_t^2 dt
\]
\[
dY_t = (Y_t(1 - Y_t)(\mu - Y_t \sigma^2) + (u_t + \lambda Y_t u_t^2))dt + \sigma Y_t(1 - Y_t)dW_t
\]

- Illiquidity...
- ...reduces portfolio return \(-\lambda u_t^2 \).
 Turnover effect quadratic: quantities times price impact.
- ...increases risky weight \(\lambda Y_t u_t^2 \). Buy: pay more cash. Sell: get less cash.
 Turnover effect linear in risky weight \(Y_t \). Vanishes for cash position.
Wealth and Portfolio

- Continuous trading: execution price \(\tilde{S}_t(\dot{\theta}_t) = S_t \left(1 + \lambda \frac{\dot{\theta}_t S_t}{\tilde{X}_t} \right) \), cash position

\[
dC_t = -S_t \left(1 + \lambda \frac{\dot{\theta}_t S_t}{\tilde{X}_t} \right) d\theta_t = -S_t \left(\dot{\theta}_t + \lambda \frac{S_t}{\tilde{X}_t} \dot{\theta}_t^2 \right) dt
\]

- Trading volume as wealth turnover \(u_t := \frac{\dot{\theta}_t S_t}{\tilde{X}_t} \).
 Amount traded in unit of time, as fraction of wealth.

- Dynamics for wealth \(\tilde{X}_t := \theta_t S_t + C_t \) and risky portfolio weight \(Y_t := \frac{\theta_t S_t}{\tilde{X}_t} \)

\[
\frac{d\tilde{X}_t}{\tilde{X}_t} = Y_t(\mu dt + \sigma dW_t) - \lambda u_t^2 dt
\]

\[
dY_t = (Y_t(1 - Y_t)(\mu - Y_t\sigma^2) + (u_t + \lambda Y_t u_t^2)) dt + \sigma Y_t(1 - Y_t) dW_t
\]

- Illiquidity...

 - ...reduces portfolio return \((-\lambda u_t^2)\).
 Turnover effect quadratic: quantities times price impact.

 - ...increases risky weight \((\lambda Y_t u_t^2)\). Buy: pay more cash. Sell: get less cash.
 Turnover effect linear in risky weight \(Y_t \). Vanishes for cash position.
Wealth and Portfolio

- Continuous trading: execution price \(\tilde{S}_t(\dot{\theta}_t) = S_t \left(1 + \lambda \frac{\dot{\theta}_t S_t}{X_t} \right) \), cash position

\[
dC_t = -S_t \left(1 + \lambda \frac{\dot{\theta}_t S_t}{X_t} \right) d\theta_t = -S_t \left(\dot{\theta}_t + \lambda \frac{S_t}{X_t} \dot{\theta}_t^2 \right) dt
\]

- Trading volume as wealth turnover \(u_t := \frac{\dot{\theta}_t S_t}{X_t} \).
 Amount traded in unit of time, as fraction of wealth.

- Dynamics for wealth \(X_t := \theta_t S_t + C_t \) and risky portfolio weight \(Y_t := \frac{\theta_t S_t}{X_t} \)

\[
\frac{dX_t}{X_t} = Y_t (\mu dt + \sigma dW_t) - \lambda u_t^2 dt
\]

\[
dY_t = \left(Y_t (1 - Y_t) (\mu - Y_t \sigma^2) + (u_t + \lambda Y_t u_t^2) \right) dt + \sigma Y_t (1 - Y_t) dW_t
\]

- Illiquidity...

- ...reduces portfolio return \((-\lambda u_t^2)\).
 Turnover effect quadratic: quantities times price impact.

- ...increases risky weight \((\lambda Y_t u_t^2)\). Buy: pay more cash. Sell: get less cash.
 Turnover effect linear in risky weight \(Y_t \). Vanishes for cash position.
Wealth and Portfolio

- Continuous trading: execution price $\tilde{S}_t(\dot{\theta}_t) = S_t \left(1 + \lambda \frac{\dot{\theta}_t S_t}{X_t}\right)$, cash position

 $$dC_t = -S_t \left(1 + \lambda \frac{\dot{\theta}_t S_t}{X_t}\right) d\theta_t = -S_t \left(\dot{\theta}_t + \lambda \frac{S_t}{X_t} \dot{\theta}_t^2\right) dt$$

- Trading volume as wealth turnover $u_t := \frac{\dot{\theta}_t S_t}{X_t}$.
 Amount traded in unit of time, as fraction of wealth.

- Dynamics for wealth $X_t := \theta_t S_t + C_t$ and risky portfolio weight $Y_t := \frac{\theta_t S_t}{X_t}$

 $$\frac{dX_t}{X_t} = Y_t(\mu dt + \sigma dW_t) - \lambda u_t^2 dt$$

 $$dY_t = (Y_t(1 - Y_t)(\mu - Y_t \sigma^2) + (u_t + \lambda Y_t u_t^2)) dt + \sigma Y_t(1 - Y_t) dW_t$$

- Illiquidity...

- ...reduces portfolio return ($-\lambda u_t^2$).
 Turnover effect quadratic: quantities times price impact.

- ...increases risky weight ($\lambda Y_t u_t^2$).
 Buy: pay more cash. Sell: get less cash.
 Turnover effect linear in risky weight Y_t. Vanishes for cash position.
Admissible Strategies

Definition

Admissible strategy: process \((u_t)_{t \geq 0}\), adapted to \(\mathcal{F}_t\), such that system

\[
\frac{dX_t}{X_t} = Y_t(\mu dt + \sigma dW_t) - \lambda u_t^2 dt
\]

\[
dY_t = (Y_t(1 - Y_t)(\mu - Y_t \sigma^2) + (u_t + \lambda Y_t u_t^2))dt + \sigma Y_t(1 - Y_t)dW_t
\]

has unique solution satisfying \(X_t \geq 0\) a.s. for all \(t \geq 0\).

- Contrast to models without frictions or with transaction costs: control variable is not risky weight \(Y_t\), but its “rate of change” \(u_t\).
- Portfolio weight \(Y_t\) is now a state variable.
- Illiquid vs. perfectly liquid market.
 Steering a ship vs. driving a race car.
- Frictionless solution \(Y_t = \frac{\mu}{\gamma \sigma^2}\) unfeasible. A still ship in stormy sea.
Admissible Strategies

Definition

Admissible strategy: process \((u_t)_{t \geq 0}\), adapted to \(\mathcal{F}_t\), such that system

\[
\frac{dX_t}{X_t} = Y_t(\mu dt + \sigma dW_t) - \lambda u_t^2 dt
\]

\[
dY_t = (Y_t(1 - Y_t)(\mu - Y_t \sigma^2) + (u_t + \lambda Y_t u_t^2)) dt + \sigma Y_t(1 - Y_t) dW_t
\]

has unique solution satisfying \(X_t \geq 0\) a.s. for all \(t \geq 0\).

- Contrast to models without frictions or with transaction costs: control variable is not risky weight \(Y_t\), but its “rate of change” \(u_t\).
- Portfolio weight \(Y_t\) is now a state variable.
- Illiquid vs. perfectly liquid market.
 Steering a ship vs. driving a race car.
- Frictionless solution \(Y_t = \frac{\mu}{\gamma \sigma^2}\) unfeasible. A still ship in stormy sea.
Admissible Strategies

Definition

Admissible strategy: process \((u_t)_{t \geq 0}\), adapted to \(\mathcal{F}_t\), such that system

\[
\begin{align*}
\frac{dX_t}{X_t} &= Y_t(\mu dt + \sigma dW_t) - \lambda u_t^2 dt \\
\quad dY_t &= (Y_t(1 - Y_t)(\mu - Y_t\sigma^2) + (u_t + \lambda Y_t u_t^2)) dt + \sigma Y_t(1 - Y_t)dW_t
\end{align*}
\]

has unique solution satisfying \(X_t \geq 0\) a.s. for all \(t \geq 0\).

- Contrast to models without frictions or with transaction costs: control variable is not risky weight \(Y_t\), but its “rate of change” \(u_t\).
- Portfolio weight \(Y_t\) is now a state variable.
- Illiquid vs. perfectly liquid market.
 Steering a ship vs. driving a race car.
- Frictionless solution \(Y_t = \frac{\mu}{\gamma} \sigma^2\) unfeasible. A still ship in stormy sea.
Admissible Strategies

Definition

Admissible strategy: process \((u_t)_{t \geq 0}\), adapted to \(\mathcal{F}_t\), such that system

\[
\frac{dX_t}{X_t} = Y_t(\mu dt + \sigma dW_t) - \lambda u_t^2 dt
\]

\[
dY_t = (Y_t(1 - Y_t)(\mu - Y_t\sigma^2) + (u_t + \lambda Y_t u_t^2))dt + \sigma Y_t(1 - Y_t)dW_t
\]

has unique solution satisfying \(X_t \geq 0\) a.s. for all \(t \geq 0\).

- Contrast to models without frictions or with transaction costs: control variable is not risky weight \(Y_t\), but its “rate of change” \(u_t\).
- Portfolio weight \(Y_t\) is now a state variable.
- Illiquid vs. perfectly liquid market.
 Steering a ship vs. driving a race car.
- Frictionless solution \(Y_t = \frac{\mu}{\gamma \sigma^2}\) unfeasible. A still ship in stormy sea.
Admissible Strategies

Definition

Admissible strategy: process $(u_t)_{t \geq 0}$, adapted to \mathcal{F}_t, such that system

\[
\frac{dX_t}{X_t} = Y_t(\mu dt + \sigma dW_t) - \lambda u_t^2 dt
\]

\[
dY_t = (Y_t(1 - Y_t)(\mu - Y_t \sigma^2) + (u_t + \lambda Y_t u_t^2)) dt + \sigma Y_t(1 - Y_t)dW_t
\]

has unique solution satisfying $X_t \geq 0$ a.s. for all $t \geq 0$.

- Contrast to models without frictions or with transaction costs: control variable is not risky weight Y_t, but its “rate of change” u_t.
- Portfolio weight Y_t is now a state variable.
- Illiquid vs. perfectly liquid market. Steering a ship vs. driving a race car.
- Frictionless solution $Y_t = \frac{\mu}{\gamma \sigma^2}$ unfeasible. A still ship in stormy sea.
Objective

- **Investor with relative risk aversion** γ.
- Maximize equivalent safe rate, i.e., power utility over long horizon:

$$\max_u \lim_{T \to \infty} \frac{1}{T} \log E \left[X_T^{1-\gamma} \right]^{\frac{1}{1-\gamma}}$$

- Tradeoff between speed and impact.
- Optimal policy and welfare.
- Implied trading volume.
- Dependence on parameters.
- Asymptotics for small λ.
- Comparison with transaction costs.
Objective

- Investor with relative risk aversion γ.
- Maximize equivalent safe rate, i.e., power utility over long horizon:
 \[
 \max_u \lim_{T \to \infty} \frac{1}{T} \log E \left[X_T^{1-\gamma} \right]^{1 \over 1-\gamma}
 \]
- Tradeoff between speed and impact.
- Optimal policy and welfare.
- Implied trading volume.
- Dependence on parameters.
- Asymptotics for small λ.
- Comparison with transaction costs.
Objective

- Investor with relative risk aversion γ.
- Maximize equivalent safe rate, i.e., power utility over long horizon:
 \[
 \max_u \lim_{T \to \infty} \frac{1}{T} \log E \left[X_T^{1-\gamma} \right]^{\frac{1}{1-\gamma}}
 \]
- Tradeoff between speed and impact.
- Optimal policy and welfare.
- Implied trading volume.
- Dependence on parameters.
- Asymptotics for small λ.
- Comparison with transaction costs.
Objective

- Investor with relative risk aversion γ.
- Maximize equivalent safe rate, i.e., power utility over long horizon:
 $$\max_u \lim_{T \to \infty} \frac{1}{T} \log E \left[X_T^{1-\gamma} \right]^{\frac{1}{1-\gamma}}$$
- Tradeoff between speed and impact.
- Optimal policy and welfare.
 - Implied trading volume.
 - Dependence on parameters.
 - Asymptotics for small λ.
 - Comparison with transaction costs.
Objective

- Investor with relative risk aversion γ.
- Maximize equivalent safe rate, i.e., power utility over long horizon:
 \[
 \max_u \lim_{T \to \infty} \frac{1}{T} \log E \left[X_T^{1-\gamma} \right]^{\frac{1}{1-\gamma}}
 \]
- Tradeoff between speed and impact.
- Optimal policy and welfare.
- Implied trading volume.
- Dependence on parameters.
- Asymptotics for small λ.
- Comparison with transaction costs.
Objective

- Investor with relative risk aversion γ.
- Maximize equivalent safe rate, i.e., power utility over long horizon:
 \[
 \max_u \lim_{T \to \infty} \frac{1}{T} \log E \left[X_T^{1-\gamma} \right]^{1/(1-\gamma)}
 \]
- Tradeoff between speed and impact.
- Optimal policy and welfare.
- Implied trading volume.
- Dependence on parameters.
- Asymptotics for small λ.
- Comparison with transaction costs.
Objective

• Investor with relative risk aversion γ.
• Maximize equivalent safe rate, i.e., power utility over long horizon:

$$\max_u \lim_{T \to \infty} \frac{1}{T} \log E \left[X_T^{1-\gamma} \right]^{1-\gamma}$$

• Tradeoff between speed and impact.
• Optimal policy and welfare.
• Implied trading volume.
• Dependence on parameters.
• Asymptotics for small λ.
• Comparison with transaction costs.
Objective

- Investor with relative risk aversion γ.
- Maximize equivalent safe rate, i.e., power utility over long horizon:
 \[
 \max_u \lim_{T \to \infty} \frac{1}{T} \log E \left[X_T^{1-\gamma} \right]^{1/(1-\gamma)}
 \]
- Tradeoff between speed and impact.
- Optimal policy and welfare.
- Implied trading volume.
- Dependence on parameters.
- Asymptotics for small λ.
- Comparison with transaction costs.
Verifying

Theorem

If \(\frac{\mu}{\gamma \sigma^2} \in (0, 1) \), then the optimal wealth turnover and equivalent safe rate are:

\[
\hat{u}(y) = \frac{1}{2\lambda} \frac{q(y)}{1 - yq(y)} \quad \text{EsR}_\gamma(\hat{u}) = \beta
\]

where \(\beta \in (0, \frac{\mu^2}{2\gamma \sigma^2}) \) and \(q : [0, 1] \mapsto \mathbb{R} \) are the unique pair that solves the ODE

\[
-\beta + \mu y - \gamma \sigma^2 y^2 + y(1 - y)(\mu - \gamma \sigma^2 y)q + \frac{q^2}{4\lambda(1 - yq)} + \frac{\sigma^2}{2} y^2(1 - y)^2(q' + (1 - \gamma)q^2) = 0
\]

and \(q(0) = 2\sqrt{\lambda \beta}, \ q(1) = \lambda d - \sqrt{\lambda d(\lambda d - 2)} \), where \(d = -\gamma \sigma^2 - 2\beta + 2\mu \).

- A license to solve an ODE, of Abel type.
- Function \(q \) and scalar \(\beta \) not explicit.
- Asymptotic expansion for \(\lambda \) near zero?
Verification

Theorem

If \(\frac{\mu}{\gamma \sigma^2} \in (0, 1) \), then the optimal wealth turnover and equivalent safe rate are:

\[
\hat{u}(y) = \frac{1}{2\lambda} \frac{q(y)}{1 - yq(y)} \quad \text{EsR}_\gamma(\hat{u}) = \beta
\]

where \(\beta \in (0, \frac{\mu^2}{2\gamma \sigma^2}) \) and \(q : [0, 1] \mapsto \mathbb{R} \) are the unique pair that solves the ODE

\[
-\beta + \mu y - \gamma \sigma^2 \frac{y^2}{2} + y(1 - y)(\mu - \gamma \sigma^2 y)q + \frac{q^2}{4\lambda(1 - yq)} + \frac{\sigma^2}{2} y^2(1 - y)^2(q' + (1 - \gamma)q^2) = 0
\]

and \(q(0) = 2\sqrt{\lambda \beta}, \quad q(1) = \lambda d - \sqrt{\lambda d(\lambda d - 2)}, \) where \(d = -\gamma \sigma^2 - 2\beta + 2\mu \).

- A license to solve an ODE, of Abel type.
- Function \(q \) and scalar \(\beta \) not explicit.
- Asymptotic expansion for \(\lambda \) near zero?
Verification

Theorem

If \(\frac{\mu}{\gamma \sigma^2} \in (0, 1) \), then the optimal wealth turnover and equivalent safe rate are:

\[
\hat{u}(y) = \frac{1}{2\lambda} \frac{q(y)}{1 - yq(y)} \quad \text{and} \quad \text{EsR}_\gamma(\hat{u}) = \beta
\]

where \(\beta \in (0, \frac{\mu^2}{2\gamma \sigma^2}) \) and \(q : [0, 1] \mapsto \mathbb{R} \) are the unique pair that solves the ODE

\[
-\beta + \mu y - \gamma \frac{\sigma^2}{2} y^2 + y(1 - y)(\mu - \gamma \sigma^2 y)q + \frac{q^2}{4\lambda(1 - yq)} + \frac{\sigma^2}{2} y^2(1 - y)^2(q' + (1 - \gamma)q^2) = 0
\]

and \(q(0) = 2\sqrt{\lambda \beta}, \quad q(1) = \lambda d - \sqrt{\lambda d(\lambda d - 2)}, \) where \(d = -\gamma \sigma^2 - 2\beta + 2\mu \).

- A license to solve an ODE, of Abel type.
- Function \(q \) and scalar \(\beta \) not explicit.
- Asymptotic expansion for \(\lambda \) near zero?
Theorem

If $\frac{\mu}{\gamma \sigma^2} \in (0, 1)$, then the optimal wealth turnover and equivalent safe rate are:

$$\hat{u}(y) = \frac{1}{2\lambda} \frac{q(y)}{1 - yq(y)}$$

$$\text{EsR}_{\gamma}(\hat{u}) = \beta$$

where $\beta \in (0, \frac{\mu^2}{2\gamma \sigma^2})$ and $q : [0, 1] \mapsto \mathbb{R}$ are the unique pair that solves the ODE

$$-\beta + \mu y - \gamma \frac{\sigma^2}{2} y^2 + y(1 - y)(\mu - \gamma \sigma^2 y)q + \frac{q^2}{4\lambda(1 - yq)} + \frac{\sigma^2}{2} y^2(1 - y)^2(q' + (1 - \gamma)q^2) = 0$$

and $q(0) = 2\sqrt{\lambda \beta}$, $q(1) = \lambda d - \sqrt{\lambda d(\lambda d - 2)}$, where $d = -\gamma \sigma^2 - 2\beta + 2\mu$.

- A license to solve an ODE, of Abel type.
- Function q and scalar β not explicit.
- Asymptotic expansion for λ near zero?
Asymptotics

Theorem

\(\bar{Y} = \frac{\mu}{\gamma \sigma^2} \in (0, 1) \). Asymptotic expansions for turnover and equivalent safe rate:

\[
\hat{u}(y) = \sigma \sqrt{\frac{\gamma}{2\lambda}} (\bar{Y} - y) + O(1)
\]

\[
\operatorname{EsR}_\gamma(\hat{u}) = \frac{\mu^2}{2 \gamma \sigma^2} - \sigma^3 \sqrt{\frac{\gamma}{2}} \bar{Y}^2 (1 - \bar{Y})^2 \lambda^{1/2} + O(\lambda)
\]

Long-term average of (unsigned) turnover

\[
|\operatorname{ET}| = \lim_{T \to \infty} \frac{1}{T} \int_0^T |\hat{u}(Y_t)| \, dt = \pi^{-1/2} \sigma^{3/2} \bar{Y} (1 - \bar{Y}) \left(\gamma / 2 \right)^{1/4} \lambda^{-1/4} + O(\lambda^{1/2})
\]

• Implications?
Asymptotics

Theorem

\(\bar{Y} = \frac{\mu}{\gamma \sigma^2} \in (0, 1) \). Asymptotic expansions for turnover and equivalent safe rate:

\[
\hat{u}(y) = \sigma \sqrt{\frac{\gamma}{2\lambda}} (\bar{Y} - y) + O(1)
\]

\[
\text{EsR}_\gamma(\hat{u}) = \frac{\mu^2}{2\gamma \sigma^2} - \sigma^3 \sqrt{\frac{\gamma}{2}} \bar{Y}^2 (1 - \bar{Y})^2 \lambda^{1/2} + O(\lambda)
\]

Long-term average of (unsigned) turnover

\[
|\text{ET}| = \lim_{T \to \infty} \frac{1}{T} \int_0^T |\hat{u}(Y_t)| dt = \pi^{-1/2} \sigma^{3/2} \bar{Y} (1 - \bar{Y}) (\gamma/2)^{1/4} \lambda^{-1/4} + O(\lambda^{1/2})
\]

- Implications?
Turnover

- Turnover:
 \[\hat{u}(y) \approx \sigma \sqrt{\frac{\gamma}{2\lambda}} (\bar{Y} - y) \]

- Trade towards \(\bar{Y} \). Buy for \(y < \bar{Y} \), sell for \(y > \bar{Y} \).
- Trade speed proportional to displacement \(|y - \bar{Y}| \).
- Trade faster with more volatility. Volume typically increases with volatility.
- Trade faster if market deeper. Higher volume in more liquid markets.
- Trade faster if more risk averse. Reasonable, not obvious.
 Dual role of risk aversion.
- More risk aversion means less risky asset but more trading speed.
Turnover

- Turnover:
 \[\hat{u}(y) \approx \sigma \sqrt{\frac{\gamma}{2\lambda}} (\bar{Y} - y) \]

- Trade towards \(\bar{Y} \). Buy for \(y < \bar{Y} \), sell for \(y > \bar{Y} \).
- Trade speed proportional to displacement \(|y - \bar{Y}| \).
- Trade faster with more volatility. Volume typically increases with volatility.
- Trade faster if market deeper. Higher volume in more liquid markets.
- Trade faster if more risk averse. Reasonable, not obvious. Dual role of risk aversion.
- More risk aversion means less risky asset but more trading speed.
Turnover

- Turnover:
 \[\hat{u}(y) \approx \sigma \sqrt{\frac{\gamma}{2\lambda}} (\bar{Y} - y) \]

- Trade towards \(\bar{Y} \). Buy for \(y < \bar{Y} \), sell for \(y > \bar{Y} \).
- Trade speed proportional to displacement \(|y - \bar{Y}|\).
- Trade faster with more volatility. Volume typically increases with volatility.
- Trade faster if market deeper. Higher volume in more liquid markets.
- Trade faster if more risk averse. Reasonable, not obvious.
 Dual role of risk aversion.
- More risk aversion means less risky asset but more trading speed.
Turnover

- Turnover:
 \[\hat{u}(y) \approx \sigma \sqrt{\frac{\gamma}{2\lambda}} (\bar{Y} - y) \]

- Trade towards \(\bar{Y}\). Buy for \(y < \bar{Y}\), sell for \(y > \bar{Y}\).
- Trade speed proportional to displacement \(|y - \bar{Y}|\).
- Trade faster with more volatility. Volume typically increases with volatility.
- Trade faster if market deeper. Higher volume in more liquid markets.
- Trade faster if more risk averse. Reasonable, not obvious. Dual role of risk aversion.
- More risk aversion means less risky asset but more trading speed.
Turnover

- Turnover:
 \[\hat{u}(y) \approx \sigma \sqrt{\frac{\gamma}{2\lambda}} (\bar{Y} - y) \]

- Trade towards \(\bar{Y} \). Buy for \(y < \bar{Y} \), sell for \(y > \bar{Y} \).
- Trade speed proportional to displacement \(|y - \bar{Y}| \).
- Trade faster with more volatility. Volume typically increases with volatility.
- Trade faster if market deeper. Higher volume in more liquid markets.
- Trade faster if more risk averse. Reasonable, not obvious. Dual role of risk aversion.
- More risk aversion means less risky asset but more trading speed.
Turnover

- Turnover:
 \[\hat{u}(y) \approx \sigma \sqrt{\frac{\gamma}{2\lambda}} (\bar{Y} - y) \]

- Trade towards \(\bar{Y} \). Buy for \(y < \bar{Y} \), sell for \(y > \bar{Y} \).
- Trade speed proportional to displacement \(|y - \bar{Y}| \).
- Trade faster with more volatility. Volume typically increases with volatility.
- Trade faster if market deeper. Higher volume in more liquid markets.
- Trade faster if more risk averse. Reasonable, not obvious. Dual role of risk aversion.
- More risk aversion means less risky asset but more trading speed.
Turnover

- Turnover:
 \[\hat{u}(y) \approx \sigma \sqrt{\frac{\gamma}{2\lambda}} (\bar{Y} - y) \]

- Trade towards \(\bar{Y} \). Buy for \(y < \bar{Y} \), sell for \(y > \bar{Y} \).
- Trade speed proportional to displacement \(|y - \bar{Y}| \).
- Trade faster with more volatility. Volume typically increases with volatility.
- Trade faster if market deeper. Higher volume in more liquid markets.
- Trade faster if more risk averse. Reasonable, not obvious. Dual role of risk aversion.
- More risk aversion means less risky asset but more trading speed.
Turnover ($\mu = 8\%, \sigma = 16\%, \lambda = 10^{-3}, \gamma = 5$)

- Solution to ODE almost linear. Asymptotics accurate.
Turnover ($\mu = 8\%$, $\sigma = 16\%$, $\lambda = 10^{-3}$, $\gamma = 10$)

- Higher risk aversion: lower target and narrower interval.
Effect of Illiquidity ($\mu = 8\%$, $\sigma = 16\%$, $\gamma = 5$)

- $\lambda = 10^{-4}$ (solid), 10^{-3} (long), 10^{-2}, (short), and 10^{-1} (dotted).
Trading Volume

- Wealth turnover approximately Ornstein-Uhlenbeck:

\[
\text{\(d\hat{u}_t = \sigma \sqrt{\frac{\gamma}{2\lambda}} (\sigma^2 \bar{Y}^2 (1 - \bar{Y})(1 - \gamma) - \hat{u}_t) \, dt - \sigma^2 \sqrt{\frac{\gamma}{2\lambda}} \bar{Y} (1 - \bar{Y}) \, dW_t\)}
\]

- In the following sense:

Theorem

The process \(\hat{u}_t\) has asymptotic moments:

\[
\begin{align*}
\text{ET} := & \lim_{T \to \infty} \frac{1}{T} \int_0^T \hat{u}(Y_t) \, dt = \sigma^2 \bar{Y}^2 (1 - \bar{Y})(1 - \gamma) + o(1), \\
\text{VT} := & \lim_{T \to \infty} \frac{1}{T} \int_0^T (\hat{u}(Y_t) - \text{ET})^2 \, dt = \frac{1}{2} \sigma^3 \bar{Y}^2 (1 - \bar{Y})^2 (\gamma/2)^{1/2} \lambda^{1/2} + o(\lambda^{1/2}), \\
\text{QT} := & \lim_{T \to \infty} \frac{1}{T} E[\langle \hat{u}(Y) \rangle_T] = \sigma^4 \bar{Y}^2 (1 - \bar{Y})^2 (\gamma/2) \lambda^{-1} + o(\lambda^{-1})
\end{align*}
\]
Trading Volume

- Wealth turnover approximately Ornstein-Uhlenbeck:

\[d\hat{u}_t = \sigma \sqrt{\frac{\gamma}{2\lambda}} \left(\sigma^2 \bar{Y}^2 (1 - \bar{Y})(1 - \gamma) - \hat{u}_t \right) dt - \sigma^2 \sqrt{\frac{\gamma}{2\lambda}} \bar{Y} (1 - \bar{Y}) dW_t \]

- In the following sense:

Theorem

The process \(\hat{u}_t \) has asymptotic moments:

\[
ET := \lim_{T \to \infty} \frac{1}{T} \int_0^T \hat{u}(Y_t) dt = \sigma^2 \bar{Y}^2 (1 - \bar{Y})(1 - \gamma) + o(1), \\
VT := \lim_{T \to \infty} \frac{1}{T} \int_0^T (\hat{u}(Y_t) - ET)^2 dt = \frac{1}{2} \sigma^3 \bar{Y}^2 (1 - \bar{Y})^2 (\gamma/2)^{1/2} \lambda^{1/2} + o(\lambda^{1/2}), \\
QT := \lim_{T \to \infty} \frac{1}{T} E[\langle \hat{u}(Y) \rangle_T] = \sigma^4 \bar{Y}^2 (1 - \bar{Y})^2 (\gamma/2) \lambda^{-1} + o(\lambda^{-1})
\]
Trading Volume

• Wealth turnover approximately Ornstein-Uhlenbeck:

\[d\hat{u}_t = \sigma \sqrt{\frac{\gamma}{2\lambda}} (\sigma^2 \bar{Y}^2(1 - \bar{Y})(1 - \gamma) - \hat{u}_t)dt - \sigma^2 \sqrt{\frac{\gamma}{2\lambda}} \bar{Y}(1 - \bar{Y})dW_t \]

• In the following sense:

Theorem

The process \(\hat{u}_t \) has asymptotic moments:

\[ET := \lim_{T \to \infty} \frac{1}{T} \int_0^T \hat{u}(Y_t)dt = \sigma^2 \bar{Y}^2(1 - \bar{Y})(1 - \gamma) + o(1) , \]

\[VT := \lim_{T \to \infty} \frac{1}{T} \int_0^T (\hat{u}(Y_t) - ET)^2 dt = \frac{1}{2} \sigma^3 \bar{Y}^2(1 - \bar{Y})^2(\gamma/2)^{1/2}\lambda^{1/2} + o(\lambda^{1/2}) , \]

\[QT := \lim_{T \to \infty} \frac{1}{T} E[\langle \hat{u}(Y) \rangle_T] = \sigma^4 \bar{Y}^2(1 - \bar{Y})^2(\gamma/2)\lambda^{-1} + o(\lambda^{-1}) \]
How big is λ?

- Implied share turnover:

$$\lim_{T \to \infty} \frac{1}{T} \int_0^T \left| \frac{u(Y_t)}{Y_t} \right| dt = \pi^{-1/2} \sigma^{3/2} (1 - \bar{Y}) (\gamma/2)^{1/4} \lambda^{-1/4}$$

- Match formula with observed share turnover. Bounds on γ, \bar{Y}.

<table>
<thead>
<tr>
<th>Period</th>
<th>Volatility</th>
<th>Share Turnover</th>
<th>$-\log_{10} \lambda$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>high</td>
<td>low</td>
</tr>
<tr>
<td>1926-1929</td>
<td>20%</td>
<td>125%</td>
<td>6.164</td>
</tr>
<tr>
<td>1930-1939</td>
<td>30%</td>
<td>39%</td>
<td>3.082</td>
</tr>
<tr>
<td>1940-1949</td>
<td>14%</td>
<td>12%</td>
<td>3.085</td>
</tr>
<tr>
<td>1950-1959</td>
<td>10%</td>
<td>12%</td>
<td>3.855</td>
</tr>
<tr>
<td>1960-1969</td>
<td>10%</td>
<td>15%</td>
<td>4.365</td>
</tr>
<tr>
<td>1970-1979</td>
<td>13%</td>
<td>20%</td>
<td>4.107</td>
</tr>
<tr>
<td>1980-1989</td>
<td>15%</td>
<td>63%</td>
<td>5.699</td>
</tr>
<tr>
<td>1990-1999</td>
<td>13%</td>
<td>95%</td>
<td>6.821</td>
</tr>
<tr>
<td>2000-2009</td>
<td>22%</td>
<td>199%</td>
<td>6.708</td>
</tr>
</tbody>
</table>

- $\gamma = 1$, $\bar{Y} = 1/2$ (high), and $\gamma = 10$, $\bar{Y} = 0$ (low).
How big is λ?

- Implied share turnover:

$$\lim_{T \to \infty} \frac{1}{T} \int_0^T |u(Y_t)/Y_t| dt = \pi^{-1/2} \sigma^{3/2} (1 - \bar{Y}) (\gamma/2)^{1/4} \lambda^{-1/4}$$

- Match formula with observed share turnover. Bounds on γ, \bar{Y}.

<table>
<thead>
<tr>
<th>Period</th>
<th>Volatility</th>
<th>Share Turnover</th>
<th>$- \log_{10} \lambda$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1926-1929</td>
<td>20%</td>
<td>125%</td>
<td>6.164</td>
</tr>
<tr>
<td>1930-1939</td>
<td>30%</td>
<td>39%</td>
<td>3.082</td>
</tr>
<tr>
<td>1940-1949</td>
<td>14%</td>
<td>12%</td>
<td>3.085</td>
</tr>
<tr>
<td>1950-1959</td>
<td>10%</td>
<td>12%</td>
<td>3.855</td>
</tr>
<tr>
<td>1960-1969</td>
<td>10%</td>
<td>15%</td>
<td>4.365</td>
</tr>
<tr>
<td>1970-1979</td>
<td>13%</td>
<td>20%</td>
<td>4.107</td>
</tr>
<tr>
<td>1980-1989</td>
<td>15%</td>
<td>63%</td>
<td>5.699</td>
</tr>
<tr>
<td>1990-1999</td>
<td>13%</td>
<td>95%</td>
<td>6.821</td>
</tr>
<tr>
<td>2000-2009</td>
<td>22%</td>
<td>199%</td>
<td>6.708</td>
</tr>
</tbody>
</table>

- $\gamma = 1$, $\bar{Y} = 1/2$ (high), and $\gamma = 10$, $\bar{Y} = 0$ (low).
How big is λ?

- Implied share turnover:

$$\lim_{T \to \infty} \frac{1}{T} \int_0^T \left| \frac{u(Y_t)}{Y_t} \right| dt = \pi^{-1/2} \sigma^{3/2} (1 - \bar{Y}) (\gamma/2)^{1/4} \lambda^{-1/4}$$

- Match formula with observed share turnover. Bounds on γ, \bar{Y}.

<table>
<thead>
<tr>
<th>Period</th>
<th>Volatility</th>
<th>Share Turnover</th>
<th>$-\log_{10} \lambda$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>high</td>
<td>low</td>
</tr>
<tr>
<td>1926-1929</td>
<td>20%</td>
<td>125%</td>
<td>6.164</td>
</tr>
<tr>
<td>1930-1939</td>
<td>30%</td>
<td>39%</td>
<td>3.082</td>
</tr>
<tr>
<td>1940-1949</td>
<td>14%</td>
<td>12%</td>
<td>3.085</td>
</tr>
<tr>
<td>1950-1959</td>
<td>10%</td>
<td>12%</td>
<td>3.855</td>
</tr>
<tr>
<td>1960-1969</td>
<td>10%</td>
<td>15%</td>
<td>4.365</td>
</tr>
<tr>
<td>1970-1979</td>
<td>13%</td>
<td>20%</td>
<td>4.107</td>
</tr>
<tr>
<td>1980-1989</td>
<td>15%</td>
<td>63%</td>
<td>5.699</td>
</tr>
<tr>
<td>1990-1999</td>
<td>13%</td>
<td>95%</td>
<td>6.821</td>
</tr>
<tr>
<td>2000-2009</td>
<td>22%</td>
<td>199%</td>
<td>6.708</td>
</tr>
</tbody>
</table>

- $\gamma = 1$, $\bar{Y} = 1/2$ (high), and $\gamma = 10$, $\bar{Y} = 0$ (low).
Welfare

• Define welfare loss as decrease in equivalent safe rate due to friction:

\[\text{LoS} = \frac{\mu^2}{2\gamma\sigma^2} - \text{EsR}_{\gamma}(\hat{u}) \approx \sigma^3 \sqrt{\frac{\gamma}{2}} \bar{Y}^2 (1 - \bar{Y})^2 \lambda^{1/2} \]

• Zero loss if no trading necessary, i.e. \(\bar{Y} \in \{0, 1\} \).
• Universal relation:

\[\text{LoS} = \pi \lambda |ET|^2 \]

Welfare loss equals squared turnover times liquidity, times \(\pi \).
• Compare to proportional transaction costs \(\varepsilon \):

\[\text{LoS} = \frac{\mu^2}{2\gamma\sigma^2} - \text{EsR}_{\gamma} \approx \frac{\gamma\sigma^2}{2} \left(\frac{3}{4\gamma} \pi_*^2 (1 - \pi_*)^2 \right)^{2/3} \varepsilon^{2/3} \]

• Universal relation:

\[\text{LoS} = \frac{3}{4} \varepsilon |ET| \]

Welfare loss equals turnover times spread, times constant \(3/4 \).
• Linear effect with transaction costs (price, not quantity). Quadratic effect with liquidity (price \textit{times} quantity).
Welfare

- Define welfare loss as decrease in equivalent safe rate due to friction:

\[
\text{LoS} = \frac{\mu^2}{2\gamma \sigma^2} - \text{EsR}_\gamma(\hat{u}) \approx \sigma^3 \sqrt{\frac{\gamma}{2}} \bar{Y}^2 (1 - \bar{Y})^2 \lambda^{1/2}
\]

- Zero loss if no trading necessary, i.e. \(\bar{Y} \in \{0, 1\} \).
- Universal relation:

\[
\text{LoS} = \pi \lambda |ET|^2
\]

Welfare loss equals squared turnover times liquidity, times \(\pi \).
- Compare to proportional transaction costs \(\varepsilon \):

\[
\text{LoS} = \frac{\mu^2}{2\gamma \sigma^2} - \text{EsR}_\gamma \approx \frac{\gamma \sigma^2}{2} \left(\frac{3}{4\gamma} \pi_*^2 (1 - \pi_*)^2 \right)^{2/3} \varepsilon^{2/3}
\]

- Universal relation:

\[
\text{LoS} = \frac{3}{4} \varepsilon |ET|
\]

Welfare loss equals turnover times spread, times constant 3/4.
- Linear effect with transaction costs (price, not quantity).
- Quadratic effect with liquidity (price times quantity).
Welfare

- Define welfare loss as decrease in equivalent safe rate due to friction:

$$\text{LoS} = \frac{\mu^2}{2\gamma \sigma^2} - \text{EsR}_\gamma(\hat{u}) \approx \sigma^3 \sqrt{\frac{\gamma}{2}} \tilde{Y}^2 (1 - \tilde{Y})^2 \lambda^{1/2}$$

- Zero loss if no trading necessary, i.e. $\tilde{Y} \in \{0, 1\}$.

- Universal relation:

$$\text{LoS} = \pi \lambda |ET|^2$$

Welfare loss equals squared turnover times liquidity, times π.

- Compare to proportional transaction costs ε:

$$\text{LoS} = \frac{\mu^2}{2\gamma \sigma^2} - \text{EsR}_\gamma \approx \frac{\gamma \sigma^2}{2} \left(\frac{3}{4\gamma} \pi_*^2 (1 - \pi_*)^2 \right)^{2/3} \varepsilon^{2/3}$$

- Universal relation:

$$\text{LoS} = \frac{3}{4} \varepsilon |ET|$$

Welfare loss equals turnover times spread, times constant $3/4$.

- Linear effect with transaction costs (price, not quantity).
- Quadratic effect with liquidity (price times quantity).
Welfare

- Define welfare loss as decrease in equivalent safe rate due to friction:

\[
\text{LoS} = \frac{\mu^2}{2\gamma\sigma^2} - \text{EsR}_\gamma(\hat{u}) \approx \sigma^3 \sqrt{\frac{\gamma}{2}} \bar{Y}^2 (1 - \bar{Y})^2 \lambda^{1/2}
\]

- Zero loss if no trading necessary, i.e. \(\bar{Y} \in \{0, 1\}\).
- Universal relation:

\[
\text{LoS} = \pi \lambda |ET|^2
\]

Welfare loss equals squared turnover times liquidity, times \(\pi\).

- Compare to proportional transaction costs \(\varepsilon\):

\[
\text{LoS} = \frac{\mu^2}{2\gamma\sigma^2} - \text{EsR}_\gamma \approx \frac{\gamma\sigma^2}{2} \left(\frac{3}{4\gamma} \pi_*^2 (1 - \pi_*)^2 \right)^{2/3} \varepsilon^{2/3}
\]

- Universal relation:

\[
\text{LoS} = \frac{3}{4} \varepsilon |ET|
\]

Welfare loss equals turnover times spread, times constant 3/4.

- Linear effect with transaction costs (price, not quantity).
- Quadratic effect with liquidity (price times quantity).
Welfare

- Define welfare loss as decrease in equivalent safe rate due to friction:

\[
\text{LoS} = \frac{\mu^2}{2\gamma\sigma^2} - \text{EsR}_\gamma(\hat{u}) \approx \sigma^3 \sqrt{\frac{\gamma}{2}} \bar{Y}^2 (1 - \bar{Y})^2 \lambda^{1/2}
\]

- Zero loss if no trading necessary, i.e. \(\bar{Y} \in \{0, 1\}\).
- Universal relation:

\[
\text{LoS} = \pi \lambda |ET|^2
\]

Welfare loss equals squared turnover times liquidity, times \(\pi\).

- Compare to proportional transaction costs \(\varepsilon\):

\[
\text{LoS} = \frac{\mu^2}{2\gamma\sigma^2} - \text{EsR}_\gamma \approx \frac{\gamma \sigma^2}{2} \left(\frac{3}{4\gamma} \pi^2 (1 - \pi^*)^2 \right)^{2/3} \varepsilon^{2/3}
\]

- Universal relation:

\[
\text{LoS} = \frac{3}{4} \varepsilon |ET|
\]

Welfare loss equals turnover times spread, times constant \(3/4\).

- Linear effect with transaction costs (price, not quantity).
- Quadratic effect with liquidity (price times quantity).
Welfare

- Define welfare loss as decrease in equivalent safe rate due to friction:

\[\text{LoS} = \frac{\mu^2}{2\gamma \sigma^2} - \text{EsR}_\gamma(\hat{u}) \approx \sigma^3 \sqrt{\frac{\gamma}{2}} \bar{Y}^2 (1 - \bar{Y})^2 \lambda^{1/2} \]

- Zero loss if no trading necessary, i.e. \(\bar{Y} \in \{0, 1\} \).
- Universal relation:

\[\text{LoS} = \pi \lambda |ET|^2 \]

Welfare loss equals squared turnover times liquidity, times \(\pi \).
- Compare to proportional transaction costs \(\varepsilon \):

\[\text{LoS} = \frac{\mu^2}{2\gamma \sigma^2} - \text{EsR}_\gamma \approx \frac{\gamma \sigma^2}{2} \left(\frac{3}{4\gamma} \pi_*^2 (1 - \pi_*)^2 \right)^{2/3} \varepsilon^{2/3} \]

- Universal relation:

\[\text{LoS} = \frac{3}{4} \varepsilon |ET| \]

Welfare loss equals turnover times spread, times constant \(3/4 \).
- Linear effect with transaction costs (price, not quantity).
- Quadratic effect with liquidity (price times quantity).
Neither a Borrower nor a Shorter Be

Theorem

If \(\frac{\mu}{\gamma \sigma^2} \leq 0 \), then \(Y_t = 0 \) and \(\hat{u} = 0 \) for all \(t \) optimal. Equivalent safe rate zero.

If \(\frac{\mu}{\gamma \sigma^2} \geq 1 \), then \(Y_t = 1 \) and \(\hat{u} = 0 \) for all \(t \) optimal. Equivalent safe rate \(\mu - \frac{\gamma}{2} \sigma^2 \).

- If Merton investor shorts, keep all wealth in safe asset, but do not short.
- If Merton investor levers, keep all wealth in risky asset, but do not lever.
- Portfolio choice for a risk-neutral investor!
- Corner solutions. But without constraints?
- Intuition: the constraint is that wealth must stay positive.
- Positive wealth does not preclude borrowing with block trading, as in frictionless models and with transaction costs.
- Block trading unfeasible with price impact proportional to turnover. Even in the limit.
- Phenomenon disappears with exponential utility.
Neither a Borrower nor a Shorter Be

Theorem

If \(\frac{\mu}{\gamma \sigma^2} \leq 0 \), then \(Y_t = 0 \) and \(\hat{u} = 0 \) for all \(t \) optimal. Equivalent safe rate zero.

If \(\frac{\mu}{\gamma \sigma^2} \geq 1 \), then \(Y_t = 1 \) and \(\hat{u} = 0 \) for all \(t \) optimal. Equivalent safe rate \(\mu - \frac{\gamma}{2} \sigma^2 \).

- If Merton investor shorts, keep all wealth in safe asset, but do not short.
- If Merton investor levers, keep all wealth in risky asset, but do not lever.
- Portfolio choice for a risk-neutral investor!
- Corner solutions. But without constraints?
- Intuition: the constraint is that wealth must stay positive.
- Positive wealth does not preclude borrowing with block trading, as in frictionless models and with transaction costs.
- Block trading unfeasible with price impact proportional to turnover. Even in the limit.
- Phenomenon disappears with exponential utility.
Neither a Borrower nor a Shorter Be

Theorem

If $\frac{\mu}{\gamma \sigma^2} \leq 0$, then $Y_t = 0$ and $\hat{u} = 0$ for all t optimal. Equivalent safe rate zero.

If $\frac{\mu}{\gamma \sigma^2} \geq 1$, then $Y_t = 1$ and $\hat{u} = 0$ for all t optimal. Equivalent safe rate $\mu - \frac{\gamma}{2} \sigma^2$.

- If Merton investor shorts, keep all wealth in safe asset, but do not short.
- If Merton investor levers, keep all wealth in risky asset, but do not lever.
- Portfolio choice for a risk-neutral investor!
- Corner solutions. But without constraints?
- Intuition: the constraint is that wealth must stay positive.
- Positive wealth does not preclude borrowing with block trading, as in frictionless models and with transaction costs.
- Block trading unfeasible with price impact proportional to turnover. Even in the limit.
- Phenomenon disappears with exponential utility.
Neither a Borrower nor a Shorter Be

Theorem

If $\frac{\mu}{\gamma \sigma^2} \leq 0$, then $Y_t = 0$ and $\hat{u} = 0$ for all t optimal. Equivalent safe rate zero.

If $\frac{\mu}{\gamma \sigma^2} \geq 1$, then $Y_t = 1$ and $\hat{u} = 0$ for all t optimal. Equivalent safe rate $\mu - \frac{\gamma}{2} \sigma^2$.

- If Merton investor shorts, keep all wealth in safe asset, but do not short.
- If Merton investor lever, keep all wealth in risky asset, but do not lever.
- Portfolio choice for a risk-neutral investor!
- Corner solutions. But without constraints?
- Intuition: the constraint is that wealth must stay positive.
- Positive wealth does not preclude borrowing with block trading, as in frictionless models and with transaction costs.
- Block trading unfeasible with price impact proportional to turnover. Even in the limit.
- Phenomenon disappears with exponential utility.
Neither a Borrower nor a Shorter Be

Theorem

If \(\frac{\mu}{\gamma \sigma^2} \leq 0 \), then \(Y_t = 0 \) and \(\hat{u} = 0 \) for all \(t \) optimal. Equivalent safe rate zero.

If \(\frac{\mu}{\gamma \sigma^2} \geq 1 \), then \(Y_t = 1 \) and \(\hat{u} = 0 \) for all \(t \) optimal. Equivalent safe rate \(\mu - \frac{\gamma}{2} \sigma^2 \).

- If Merton investor shorts, keep all wealth in safe asset, but do not short.
- If Merton investor levers, keep all wealth in risky asset, but do not lever.
- Portfolio choice for a risk-neutral investor!
- Corner solutions. But without constraints?
 - Intuition: the constraint is that wealth must stay positive.
 - Positive wealth does not preclude borrowing with block trading, as in frictionless models and with transaction costs.
 - Block trading unfeasible with price impact proportional to turnover. Even in the limit.
 - Phenomenon disappears with exponential utility.
Neither a Borrower nor a Shorter Be

Theorem

If \(\frac{\mu}{\gamma \sigma^2} \leq 0 \), then \(Y_t = 0 \) and \(\hat{u} = 0 \) for all \(t \) optimal. Equivalent safe rate zero.

If \(\frac{\mu}{\gamma \sigma^2} \geq 1 \), then \(Y_t = 1 \) and \(\hat{u} = 0 \) for all \(t \) optimal. Equivalent safe rate \(\mu - \frac{\gamma}{2} \sigma^2 \).

- If Merton investor shorts, keep all wealth in safe asset, but do not short.
- If Merton investor levers, keep all wealth in risky asset, but do not lever.
- Portfolio choice for a risk-neutral investor!
- Corner solutions. But without constraints?
- Intuition: the constraint is that wealth must stay positive.
- Positive wealth does not preclude borrowing with block trading, as in frictionless models and with transaction costs.
- Block trading unfeasible with price impact proportional to turnover. Even in the limit.
- Phenomenon disappears with exponential utility.
Neither a Borrower nor a Shorter Be

Theorem

If \(\frac{\mu}{\gamma \sigma^2} \leq 0 \), then \(Y_t = 0 \) and \(\hat{u} = 0 \) for all \(t \) optimal. Equivalent safe rate zero.

If \(\frac{\mu}{\gamma \sigma^2} \geq 1 \), then \(Y_t = 1 \) and \(\hat{u} = 0 \) for all \(t \) optimal. Equivalent safe rate \(\mu - \frac{\gamma}{2} \sigma^2 \).

- If Merton investor shorts, keep all wealth in safe asset, but do not short.
- If Merton investor levers, keep all wealth in risky asset, but do not lever.
- Portfolio choice for a risk-neutral investor!
- Corner solutions. But without constraints?
- Intuition: the constraint is that wealth must stay positive.
- Positive wealth does not preclude borrowing with block trading, as in frictionless models and with transaction costs.
- Block trading unfeasible with price impact proportional to turnover. Even in the limit.
- Phenomenon disappears with exponential utility.
Neither a Borrower nor a Shorter Be

Theorem

If \(\frac{\mu}{\gamma \sigma^2} \leq 0 \), then \(Y_t = 0 \) and \(\hat{u} = 0 \) for all \(t \) optimal. Equivalent safe rate zero.

If \(\frac{\mu}{\gamma \sigma^2} \geq 1 \), then \(Y_t = 1 \) and \(\hat{u} = 0 \) for all \(t \) optimal. Equivalent safe rate \(\mu - \frac{\gamma}{2} \sigma^2 \).

- If Merton investor shorts, keep all wealth in safe asset, but do not short.
- If Merton investor levers, keep all wealth in risky asset, but do not lever.
- Portfolio choice for a risk-neutral investor!
- Corner solutions. But without constraints?
- Intuition: the constraint is that wealth must stay positive.
- Positive wealth does not preclude borrowing with block trading, as in frictionless models and with transaction costs.
- Block trading unfeasible with price impact proportional to turnover. Even in the limit.
- Phenomenon disappears with exponential utility.
Neither a Borrower nor a Shorter Be

Theorem

If $\frac{\mu}{\gamma \sigma^2} \leq 0$, then $Y_t = 0$ and $\hat{u} = 0$ for all t optimal. Equivalent safe rate zero.

If $\frac{\mu}{\gamma \sigma^2} \geq 1$, then $Y_t = 1$ and $\hat{u} = 0$ for all t optimal. Equivalent safe rate $\mu - \frac{\gamma}{2} \sigma^2$.

- If Merton investor shorts, keep all wealth in safe asset, but do not short.
- If Merton investor levers, keep all wealth in risky asset, but do not lever.
- Portfolio choice for a risk-neutral investor!
- Corner solutions. But without constraints?
- Intuition: the constraint is that wealth must stay positive.
- Positive wealth does not preclude borrowing with block trading, as in frictionless models and with transaction costs.
- Block trading unfeasible with price impact proportional to turnover. Even in the limit.
- Phenomenon disappears with exponential utility.
Control Argument

- Value function v depends on (1) current wealth X_t, (2) current risky weight Y_t, and (3) calendar time t.

- Evolution for fixed trading strategy $u = \frac{\dot{\theta}_t S_t}{X_t}$:

 \[
 dv(X_t, Y_t, t) = v_t dt + v_x (\mu X_t Y_t - \lambda X_t u_t^2) dt + v_x X_t Y_t \sigma dW_t \\
 + v_y (Y_t (1 - Y_t) (\mu - Y_t \sigma^2) + u_t + \lambda Y_t u_t^2) dt + v_y Y_t (1 - Y_t) \sigma dW_t \\
 + \left(\frac{\sigma^2}{2} v_{xx} X_t^2 Y_t^2 + \frac{\sigma^2}{2} v_{yy} Y_t^2 (1 - Y_t)^2 + \sigma^2 v_{xy} X_t Y_t^2 (1 - Y_t) \right) dt
 \]

- Maximize drift over u, and set result equal to zero:

 \[
 v_t + \max_u \left(v_x (\mu x y - \lambda x u^2) + v_y (y (1 - y) (\mu - \sigma^2 y) + u + \lambda y u^2) \\
 + \frac{\sigma^2 y^2}{2} \left(v_{xx} x^2 + v_{yy} (1 - y)^2 + 2 v_{xy} x (1 - y) \right) \right) = 0
 \]
Control Argument

- Value function v depends on (1) current wealth X_t, (2) current risky weight Y_t, and (3) calendar time t.

- Evolution for fixed trading strategy $u = \frac{\dot{\theta}_t S_t}{X_t}$:

$$
\begin{align*}
 dv(X_t, Y_t, t) &= v_t dt + v_x (\mu X_t Y_t - \lambda X_t u_t^2) dt + v_x X_t Y_t \sigma dW_t \\
 &\quad + v_y (Y_t(1 - Y_t)(\mu - Y_t \sigma^2) + u_t + \lambda Y_t u_t^2) dt + v_y Y_t (1 - Y_t) \sigma dW_t \\
 &\quad + \left(\frac{\sigma^2}{2} v_{xx} X_t^2 Y_t^2 + \frac{\sigma^2}{2} v_{yy} Y_t^2 (1 - Y_t)^2 + \sigma^2 v_{xy} X_t Y_t^2 (1 - Y_t) \right) dt
\end{align*}
$$

- Maximize drift over u, and set result equal to zero:

$$
\begin{align*}
v_t + \max_u \left(v_x (\mu xy - \lambda xu^2) + v_y (y(1 - y)(\mu - \sigma^2 y) + u + \lambda yu^2) \\
\quad + \frac{\sigma^2 y^2}{2} (v_{xx} x^2 + v_{yy} (1 - y)^2 + 2v_{xy} x (1 - y)) \right) &= 0
\end{align*}
$$
Control Argument

• Value function v depends on (1) current wealth X_t, (2) current risky weight Y_t, and (3) calendar time t.

• Evolution for fixed trading strategy $u = \frac{\dot{\theta}_t S_t}{X_t}$:

$$
\begin{align*}
dv(X_t, Y_t, t) &= v_t dt + v_x (\mu X_t Y_t - \lambda X_t u_t^2) dt + v_x X_t Y_t \sigma dW_t \\
&\quad + v_y (Y_t (1 - Y_t)(\mu - Y_t \sigma^2) + u_t + \lambda Y_t u_t^2) dt + v_y Y_t (1 - Y_t) \sigma dW_t \\
&\quad + \left(\frac{\sigma^2}{2} v_{xx} X_t^2 Y_t^2 + \frac{\sigma^2}{2} v_{yy} Y_t^2 (1 - Y_t)^2 + \sigma^2 v_{xy} X_t Y_t^2 (1 - Y_t) \right) dt
\end{align*}
$$

• Maximize drift over u, and set result equal to zero:

$$
\begin{align*}
v_t + \max_u \left(v_x (\mu x y - \lambda x u^2) + v_y (y (1 - y)(\mu - \sigma^2 y) + u + \lambda y u^2) \\
&\quad + \frac{\sigma^2 y^2}{2} (v_{xx} x^2 + v_{yy} (1 - y)^2 + 2 v_{xy} x (1 - y)) \right) = 0
\end{align*}
$$
Homogeneity and Long-Run

- Homogeneity in wealth $v(t, x, y) = x^{1-\gamma} v(t, 1, y)$.
- Guess long-term growth at equivalent safe rate β, to be found.
- Substitution $v(t, x, y) = \frac{x^{1-\gamma}}{1-\gamma} e^{(1-\gamma)(\beta(T-t)+\int y q(z) dz)}$ reduces HJB equation

$$-\beta + \max_u \left(\left(\mu y - \gamma \frac{\sigma^2}{2} y^2 - \lambda u^2 \right) + q(y(1-y)(\mu - \gamma \sigma^2 y) + u + \lambda y u^2 \right) + \frac{\sigma^2}{2} y^2 (1-y)^2 \left(q' + (1-\gamma) q^2 \right) \right) = 0.$$

- Maximum for $u(y) = \frac{q(y)}{2\lambda(1-y q(y))}$.
- Plugging yields

$$\mu y - \gamma \frac{\sigma^2}{2} y^2 + y(1-y)(\mu - \gamma \sigma^2 y) q + \frac{q^2}{4\lambda(1-y q)} + \frac{\sigma^2}{2} y^2 (1-y)^2 (q' + (1-\gamma) q^2) = \beta$$

- $\beta = \frac{\mu^2}{2\gamma \sigma^2}$, $q = 0$, $y = \frac{\mu}{\gamma \sigma^2}$ corresponds to Merton solution.
- Classical model as a singular limit.
Homogeneity and Long-Run

- Homogeneity in wealth $v(t, x, y) = x^{1-\gamma} v(t, 1, y)$.
- Guess long-term growth at equivalent safe rate β, to be found.
- Substitution $v(t, x, y) = \frac{x^{1-\gamma}}{1-\gamma} e^{(1-\gamma)(\beta(T-t)+\int^y q(z)dz)}$ reduces HJB equation

$$-\beta + \max_u \left((\mu y - \gamma \frac{\sigma^2}{2} y^2 - \lambda u^2) + q(y(1-y)(\mu - \gamma \sigma^2 y) + u + \lambda y u^2)
ight.$$

$$+ \frac{\sigma^2}{2} y^2 (1-y)^2 (q' + (1-\gamma)q^2) \right) = 0.$$

- Maximum for $u(y) = \frac{q(y)}{2\lambda(1-yq(y))}$.
- Plugging yields

$$\mu y - \gamma \frac{\sigma^2}{2} y^2 + y(1-y)(\mu - \gamma \sigma^2 y)q + \frac{q^2}{4\lambda(1-yq)} + \frac{\sigma^2}{2} y^2 (1-y)^2 (q' + (1-\gamma)q^2) = \beta$$

- $\beta = \frac{\mu^2}{2\gamma \sigma^2}$, $q = 0$, $y = \frac{\mu}{\gamma \sigma^2}$ corresponds to Merton solution.
- Classical model as a singular limit.
Homogeneity and Long-Run

- Homogeneity in wealth \(v(t, x, y) = x^{1-\gamma} v(t, 1, y) \).
- Guess long-term growth at equivalent safe rate \(\beta \), to be found.
- Substitution \(v(t, x, y) = \frac{x^{1-\gamma}}{1-\gamma} e^{(1-\gamma)(\beta(T-t)+\int^y q(z)dz)} \) reduces HJB equation
 \[
 -\beta + \max_u \left(\left(\mu y - \gamma \frac{\sigma^2}{2} y^2 - \lambda u^2 \right) + q(y(1-y)(\mu - \gamma \sigma^2 y) + u + \lambda y u^2 \right) + \frac{\sigma^2}{2} y^2 (1-y)^2 \left(q' + (1-\gamma)q^2 \right) = 0. \]

- Maximum for \(u(y) = \frac{q(y)}{2\lambda(1-\gamma q(y))} \).
- Plugging yields
 \[
 \mu y - \gamma \frac{\sigma^2}{2} y^2 + y(1-y)(\mu - \gamma \sigma^2 y) q + \frac{q^2}{4\lambda(1-\gamma q(y)} + \frac{\sigma^2}{2} y^2 (1-y)^2 (q' + (1-\gamma)q^2) = \beta
 \]

- \(\beta = \frac{\mu^2}{2\gamma \sigma^2} \), \(q = 0 \), \(y = \frac{\mu}{\gamma \sigma^2} \) corresponds to Merton solution.
- Classical model as a singular limit.
Homogeneity and Long-Run

- Homogeneity in wealth \(v(t, x, y) = x^{1-\gamma} v(t, 1, y) \).
- Guess long-term growth at equivalent safe rate \(\beta \), to be found.
- Substitution \(v(t, x, y) = \frac{x^{1-\gamma}}{1-\gamma} e^{(1-\gamma)(\beta(T-t)+\int^y q(z)dz)} \) reduces HJB equation

\[-\beta + \max_u \left(\left(\mu y - \gamma \frac{\sigma^2}{2} y^2 - \lambda u^2 \right) + q(y(1-y)(\mu - \gamma \sigma^2 y) + u + \lambda y u^2 \right)
 \right. \\
 \left. + \frac{\sigma^2}{2} y^2 (1-y)^2 (q' + (1-\gamma)q^2) \right) = 0.\]

- Maximum for \(u(y) = \frac{q(y)}{2\lambda(1-yq(y))} \).
- Plugging yields

\[\mu y - \gamma \frac{\sigma^2}{2} y^2 + y(1-y)(\mu - \gamma \sigma^2 y)q + \frac{q^2}{4\lambda(1-yq)} + \frac{\sigma^2}{2} y^2 (1-y)^2 (q' + (1-\gamma)q^2) = \beta\]

- \(\beta = \frac{\mu^2}{2\gamma \sigma^2} \), \(q = 0 \), \(y = \frac{\mu}{\gamma \sigma^2} \) corresponds to Merton solution.
- Classical model as a singular limit.
Homogeneity and Long-Run

- Homogeneity in wealth $\nu(t, x, y) = x^{1-\gamma} \nu(t, 1, y)$.
- Guess long-term growth at equivalent safe rate β, to be found.
- Substitution $\nu(t, x, y) = \frac{x^{1-\gamma}}{1-\gamma} e^{(1-\gamma)(\beta(T-t) + \int^y q(z)dz)}$ reduces HJB equation

\[-\beta + \max_u \left(\left(\mu y - \frac{\gamma \sigma^2}{2} y^2 - \lambda u^2 \right) + q(y(1-y)(\mu - \gamma \sigma^2 y) + u + \lambda yu^2 \right) + \frac{\sigma^2}{2} y^2 (1-y)^2 (q' + (1-\gamma)q^2) \right) = 0.\]

- Maximum for $u(y) = \frac{q(y)}{2\lambda(1-yq(y))}$.
- Plugging yields

\[\mu y - \frac{\gamma \sigma^2}{2} y^2 + y(1-y)(\mu - \gamma \sigma^2 y)q + \frac{q^2}{4\lambda(1-yq)} + \frac{\sigma^2}{2} y^2 (1-y)^2 (q' + (1-\gamma)q^2) = \beta\]

- $\beta = \frac{\mu^2}{2\gamma \sigma^2}$, $q = 0$, $y = \frac{\mu}{\gamma \sigma^2}$ corresponds to Merton solution.
- Classical model as a singular limit.
Homogeneity and Long-Run

- Homogeneity in wealth $v(t, x, y) = x^{1-\gamma} v(t, 1, y)$.
- Guess long-term growth at equivalent safe rate β, to be found.
- Substitution $v(t, x, y) = \frac{x^{1-\gamma}}{1-\gamma} e^{(1-\gamma)(\beta(T-t) + \int y q(z)dz)}$ reduces HJB equation

\[-\beta + \max_u \left(\left(\mu y - \gamma \frac{\sigma^2}{2} y^2 - \lambda u^2 \right) + q(y(1-y)(\mu - \gamma \sigma^2 y) + u + \lambda y u^2 \right) + \frac{\sigma^2}{2} y^2 (1-y)^2 (q' + (1-\gamma)q^2) \right) = 0.\]

- Maximum for $u(y) = \frac{q(y)}{2\lambda(1-yq(y))}$.
- Plugging yields

$$\mu y - \gamma \frac{\sigma^2}{2} y^2 + y(1-y)(\mu - \gamma \sigma^2 y)q + \frac{q^2}{4\lambda(1-yq)} + \frac{\sigma^2}{2} y^2 (1-y)^2 (q' + (1-\gamma)q^2) = \beta$$

- $\beta = \frac{\mu^2}{2\gamma \sigma^2}$, $q = 0$, $y = \frac{\mu}{\gamma \sigma^2}$ corresponds to Merton solution.
- Classical model as a singular limit.
Homogeneity and Long-Run

• Homogeneity in wealth $v(t, x, y) = x^{1-\gamma} v(t, 1, y)$.
• Guess long-term growth at equivalent safe rate β, to be found.
• Substitution $v(t, x, y) = \frac{x^{1-\gamma}}{1-\gamma} e^{(1-\gamma)(\beta(T-t)+\int^y q(z)dz)}$ reduces HJB equation

$$-\beta + \max_u \left(\left(\mu y - \gamma \frac{\sigma^2}{2} y^2 - \lambda u^2 \right) + q(y(1-y)(\mu - \gamma \sigma^2 y) + u + \lambda yu^2 \right)
+ \frac{\sigma^2}{2} y^2(1-y)^2(q' + (1-\gamma)q^2) \right) = 0.$$

• Maximum for $u(y) = \frac{q(y)}{2\lambda(1-yq(y))}$.
• Plugging yields

$$\mu y - \gamma \frac{\sigma^2}{2} y^2 + y(1-y)(\mu - \gamma \sigma^2 y)q + \frac{q^2}{4\lambda(1-yq)} + \frac{\sigma^2}{2} y^2(1-y)^2(q' + (1-\gamma)q^2) = \beta$$

• $\beta = \frac{\mu^2}{2\gamma \sigma^2}$, $q = 0$, $y = \frac{\mu}{\gamma \sigma^2}$ corresponds to Merton solution.
• Classical model as a singular limit.
Asymptotics

- Expand equivalent safe rate as \(\beta = \frac{\mu^2}{2\gamma\sigma^2} - c(\lambda) \)
- Function \(c \) represents welfare impact of illiquidity.
- Expand function as \(q(y) = q^{(1)}(y)\lambda^{1/2} + o(\lambda^{1/2}) \).
- Plug expansion in HJB equation

\[
-\beta + \mu y - \gamma \frac{\sigma^2}{2} y^2 + y(1-y)(\mu - \gamma \sigma^2 y)q + \frac{q^2}{4\lambda(1-yq)} + \frac{\sigma^2}{2} y^2(1-y)^2(q' + (1-\gamma)q^2) = 0
\]

- Yields

\[
q^{(1)}(y) = \sigma^{-1}(\gamma/2)^{-1/2}(\mu - \gamma \sigma^2 y)
\]

- Turnover follows through \(u(y) = \frac{q(y)}{2\lambda(1-yq(y))} \).
- Plug \(q^{(1)}(y) \) back in equation, and set \(y = \bar{Y} \).
- Yields welfare loss \(c(\lambda) = \sigma^3(\gamma/2)^{-1/2}\bar{Y}^2(1 - \bar{Y})^2\lambda^{1/2} + o(\lambda^{1/2}) \).
Asymptotics

- Expand equivalent safe rate as $\beta = \frac{\mu^2}{2\gamma\sigma^2} - c(\lambda)$.
- Function c represents welfare impact of illiquidity.
 - Expand function as $q(y) = q^{(1)}(y)\lambda^{1/2} + o(\lambda^{1/2})$.
 - Plug expansion in HJB equation

 $-\beta + \mu y - \gamma \frac{\sigma^2}{2} y^2 + y(1-y)(\mu - \gamma \sigma^2 y)q + \frac{q^2}{4\lambda(1-yq)} + \frac{\sigma^2}{2} y^2(1-y)^2(q' + (1-\gamma)q^2) = 0$

 - Yields

 $q^{(1)}(y) = \sigma^{-1}(\gamma/2)^{-1/2}(\mu - \gamma \sigma^2 y)$

 - Turnover follows through $u(y) = \frac{q(y)}{2\lambda(1-yq(y))}$.

 - Plug $q^{(1)}(y)$ back in equation, and set $y = \bar{Y}$.

 - Yields welfare loss $c(\lambda) = \sigma^3(\gamma/2)^{-1/2} \bar{Y}^2(1 - \bar{Y})^2 \lambda^{1/2} + o(\lambda^{1/2})$.
Asymptotics

- Expand equivalent safe rate as $\beta = \frac{\mu^2}{2\gamma \sigma^2} - c(\lambda)$
- Function c represents welfare impact of illiquidity.
- Expand function as $q(y) = q^{(1)}(y)\lambda^{1/2} + o(\lambda^{1/2})$.
- Plug expansion in HJB equation
 \[-\beta + \mu y - \gamma \frac{\sigma^2}{2} y^2 + y(1-y)(\mu - \gamma \sigma^2 y)q + \frac{q^2}{4\lambda(1-yq)} + \frac{\sigma^2}{2} y^2(1-y)^2(q' + (1-\gamma)q^2) = \]
- Yields
 \[q^{(1)}(y) = \sigma^{-1}(\gamma/2)^{-1/2}(\mu - \gamma \sigma^2 y) \]
- Turnover follows through $u(y) = \frac{q(y)}{2\lambda(1-yq(y))}$.
- Plug $q^{(1)}(y)$ back in equation, and set $y = \bar{Y}$.
- Yields welfare loss $c(\lambda) = \sigma^{3}(\gamma/2)^{-1/2} \bar{Y}^2(1 - \bar{Y})^2 \lambda^{1/2} + o(\lambda^{1/2})$.
Asymptotics

- Expand equivalent safe rate as $\beta = \frac{\mu^2}{2\gamma \sigma^2} - c(\lambda)$.
- Function c represents welfare impact of illiquidity.
- Expand function as $q(y) = q^{(1)}(y)\lambda^{1/2} + o(\lambda^{1/2})$.
- Plug expansion in HJB equation

\[-\beta + \mu y - \gamma \frac{\sigma^2}{2} y^2 + y(1-y)(\mu - \gamma \sigma^2 y)q + \frac{q^2}{4\lambda(1-yq)} + \frac{\sigma^2}{2} y^2 (1-y)^2 (q' + (1-\gamma)q^2) = \]

- Yields

\[q^{(1)}(y) = \sigma^{-1}(\gamma/2)^{-1/2}(\mu - \gamma \sigma^2 y)\]

- Turnover follows through $u(y) = \frac{q(y)}{2\lambda(1-yq(y))}$.
- Plug $q^{(1)}(y)$ back in equation, and set $y = \bar{Y}$.
- Yields welfare loss $c(\lambda) = \sigma^3(\gamma/2)^{-1/2} \bar{Y}^2 (1 - \bar{Y})^2 \lambda^{1/2} + o(\lambda^{1/2})$.
Asymptotics

- Expand equivalent safe rate as $\beta = \frac{\mu^2}{2\gamma \sigma^2} - c(\lambda)$
- Function c represents welfare impact of illiquidity.
- Expand function as $q(y) = q^{(1)}(y)\lambda^{1/2} + o(\lambda^{1/2})$.
- Plug expansion in HJB equation

$$-\beta + \mu y - \gamma \frac{\sigma^2}{2} y^2 + y(1-y)(\mu - \gamma \sigma^2 y)q + \frac{q^2}{4\lambda(1-yq)} + \frac{\sigma^2}{2} y^2(1-y)^2(q'(1-\gamma)q^2) = 0$$

- Yields

$$q^{(1)}(y) = \sigma^{-1}(\gamma/2)^{-1/2}(\mu - \gamma \sigma^2 y)$$

- Turnover follows through $u(y) = \frac{q(y)}{2\lambda(1-yq(y))}$.
- Plug $q^{(1)}(y)$ back in equation, and set $y = \bar{Y}$.
- Yields welfare loss $c(\lambda) = \sigma^3(\gamma/2)^{-1/2}\bar{Y}^2(1 - \bar{Y})^2\lambda^{1/2} + o(\lambda^{1/2})$.
Asymptotics

- Expand equivalent safe rate as $\beta = \frac{\mu^2}{2\gamma\sigma^2} - c(\lambda)$
- Function c represents welfare impact of illiquidity.
- Expand function as $q(y) = q^{(1)}(y)\lambda^{1/2} + o(\lambda^{1/2})$.
- Plug expansion in HJB equation

$$-\beta + \mu y - \gamma \frac{\sigma^2}{2} y^2 + y(1-y)(\mu - \gamma \sigma^2 y)q + \frac{q^2}{4\lambda(1-yq)} + \frac{\sigma^2}{2} y^2(1-y)^2(q' + (1-\gamma)q^2) =$$

- Yields

$$q^{(1)}(y) = \sigma^{-1}(\gamma/2)^{-1/2}(\mu - \gamma \sigma^2 y)$$

- Turnover follows through $u(y) = \frac{q(y)}{2\lambda(1-yq(y))}$.
- Plug $q^{(1)}(y)$ back in equation, and set $y = \bar{Y}$.
- Yields welfare loss $c(\lambda) = \sigma^3(\gamma/2)^{-1/2} \bar{Y}^2(1 - \bar{Y})^2 \lambda^{1/2} + o(\lambda^{1/2})$.
Asymptotics

- Expand equivalent safe rate as $\beta = \frac{\mu^2}{2\gamma\sigma^2} - c(\lambda)$
- Function c represents welfare impact of illiquidity.
- Expand function as $q(y) = q^{(1)}(y)\lambda^{1/2} + o(\lambda^{1/2})$.
- Plug expansion in HJB equation

$$-\beta + \mu y - \gamma \frac{\sigma^2}{2} y^2 + y(1-y)(\mu - \gamma\sigma^2 y)q + \frac{q^2}{4\lambda(1-yq)} + \frac{\sigma^2}{2} y^2(1-y)^2(q' + (1-\gamma)q^2) = 0$$

- Yields

$$q^{(1)}(y) = \sigma^{-1}(\gamma/2)^{-1/2}(\mu - \gamma\sigma^2 y)$$

- Turnover follows through $u(y) = \frac{q(y)}{2\lambda(1-yq(y))}$.
- Plug $q^{(1)}(y)$ back in equation, and set $y = \bar{Y}$.

- Yields welfare loss $c(\lambda) = \sigma^3(\gamma/2)^{-1/2} \bar{Y}^2(1 - \bar{Y})^2 \lambda^{1/2} + o(\lambda^{1/2})$.
Asymptotics

- Expand equivalent safe rate as $\beta = \frac{\mu^2}{2\gamma\sigma^2} - c(\lambda)$
- Function c represents welfare impact of illiquidity.
- Expand function as $q(y) = q^{(1)}(y)\lambda^{1/2} + o(\lambda^{1/2})$.
- Plug expansion in HJB equation

$$-\beta + \mu y - \gamma \frac{\sigma^2}{2} y^2 + y(1 - y)(\mu - \gamma\sigma^2 y)q + \frac{q^2}{4\lambda(1-yq)} + \frac{\sigma^2}{2} y^2 (1 - y)^2 (q' + (1-\gamma)q^2) = 0$$

- Yields

$$q^{(1)}(y) = \sigma^{-1}(\gamma/2)^{-1/2} (\mu - \gamma\sigma^2 y)$$
- Turnover follows through $u(y) = \frac{q(y)}{2\lambda(1-yq(y))}$.
- Plug $q^{(1)}(y)$ back in equation, and set $y = \bar{Y}$.
- Yields welfare loss $c(\lambda) = \sigma^3 (\gamma/2)^{-1/2} \bar{Y}^2 (1 - \bar{Y})^2 \lambda^{1/2} + o(\lambda^{1/2})$.
Issues

- How to make argument rigorous?
 - Heuristics yield ODE, but no boundary conditions!
 - Relation between ODE and optimization problem?
Issues

- How to make argument rigorous?
- Heuristics yield ODE, but no boundary conditions!
- Relation between ODE and optimization problem?
Issues

- How to make argument rigorous?
- Heuristics yield ODE, but no boundary conditions!
- Relation between ODE and optimization problem?
Verification

Lemma

Let q solve the HJB equation, and define $Q(y) = \int_{y}^{\infty} q(z)dz$. There exists a probability \hat{P}, equivalent to P, such that the terminal wealth X_T of any admissible strategy satisfies:

$$E[X_T^{1-\gamma}]^{\frac{1}{1-\gamma}} \leq e^{\beta T + Q(y)} E_{\hat{P}}[e^{-(1-\gamma)Q(Y_T)}]^{\frac{1}{1-\gamma}},$$

and equality holds for the optimal strategy.

- Solution of HJB equation yields asymptotic upper bound for any strategy.
- Upper bound reached for optimal strategy.
- Valid for any β, for corresponding Q.
- Idea: pick largest β^* to make Q disappear in the long run.
- A priori bounds:
 $$\beta^* < \frac{\mu^2}{2\gamma \sigma^2}$$
 (frictionless solution)
 $$\max \left(0, \mu - \frac{\gamma}{2} \sigma^2\right) < \beta^*$$
 (all in safe or risky asset)
Verification

Lemma

Let \(q \) solve the HJB equation, and define \(Q(y) = \int_{y}^{\infty} q(z)dz \). There exists a probability \(\hat{P} \), equivalent to \(P \), such that the terminal wealth \(X_T \) of any admissible strategy satisfies:

\[
E[X_T^{1-\gamma}]^{\frac{1}{1-\gamma}} \leq e^{\beta T + Q(y)} E_{\hat{P}}[e^{-(1-\gamma)Q(Y_T)}]^{\frac{1}{1-\gamma}},
\]

and equality holds for the optimal strategy.

- Solution of HJB equation yields asymptotic upper bound for any strategy.
- Upper bound reached for optimal strategy.
- Valid for any \(\beta \), for corresponding \(Q \).
- Idea: pick largest \(\beta^* \) to make \(Q \) disappear in the long run.
- A priori bounds:

\[
\beta^* < \frac{\mu^2}{2\gamma \sigma^2} \quad \text{(frictionless solution)}
\]

\[
\max \left(0, \mu - \frac{\gamma}{2} \sigma^2 \right) < \beta^* \quad \text{(all in safe or risky asset)}
\]
Verification

Lemma

Let q solve the HJB equation, and define $Q(y) = \int^y q(z)dz$. There exists a probability \hat{P}, equivalent to P, such that the terminal wealth X_T of any admissible strategy satisfies:

$$E[X_T^{1-\gamma}]^{\frac{1}{1-\gamma}} \leq e^{\beta T + Q(y)} E_{\hat{P}}[e^{-\gamma Q(Y_T)}]^{\frac{1}{1-\gamma}},$$

and equality holds for the optimal strategy.

- Solution of HJB equation yields asymptotic upper bound for any strategy.
- Upper bound reached for optimal strategy.
- Valid for any β, for corresponding Q.
- Idea: pick largest β^* to make Q disappear in the long run.
- A priori bounds:

$$\beta^* < \frac{\mu^2}{2\gamma \sigma^2} \quad \text{(frictionless solution)}$$

$$\max \left(0, \mu - \frac{\gamma}{2} \sigma^2 \right) < \beta^* \quad \text{(all in safe or risky asset)}$$
Verification

Lemma

Let \(q \) solve the HJB equation, and define \(Q(y) = \int_{y}^{\infty} q(z)dz \). There exists a probability \(\hat{P} \), equivalent to \(P \), such that the terminal wealth \(X_T \) of any admissible strategy satisfies:

\[
E[X_T^{1-\gamma}]^{\frac{1}{1-\gamma}} \leq e^{\beta T + Q(y)} E_{\hat{P}}[e^{-(1-\gamma)Q(Y_T)}]^{\frac{1}{1-\gamma}},
\]

and equality holds for the optimal strategy.

- Solution of HJB equation yields asymptotic upper bound for any strategy.
- Upper bound reached for optimal strategy.
- Valid for any \(\beta \), for corresponding \(Q \).
- Idea: pick largest \(\beta^* \) to make \(Q \) disappear in the long run.
- A priori bounds:

\[
\beta^* < \frac{\mu^2}{2\gamma\sigma^2} \quad \text{(frictionless solution)}
\]

\[
\max \left(0, \mu - \frac{\gamma}{2}\sigma^2 \right) < \beta^* \quad \text{(all in safe or risky asset)}
\]
Verification

Lemma

Let \(q \) solve the HJB equation, and define \(Q(y) = \int_{y}^\gamma q(z)dz \). There exists a probability \(\hat{P} \), equivalent to \(P \), such that the terminal wealth \(X_T \) of any admissible strategy satisfies:

\[
E[X_T^{1-\gamma}]^{\frac{1}{1-\gamma}} \leq e^{\beta T + Q(y)} E_{\hat{P}}[e^{-(1-\gamma)Q(Y_T)}]^{\frac{1}{1-\gamma}} ,
\]

and equality holds for the optimal strategy.

- Solution of HJB equation yields asymptotic upper bound for any strategy.
- Upper bound reached for optimal strategy.
- Valid for any \(\beta \), for corresponding \(Q \).
- Idea: pick largest \(\beta^* \) to make \(Q \) disappear in the long run.
- A priori bounds:
 \[
 \beta^* < \frac{\mu^2}{2\gamma\sigma^2} \quad \text{(frictionless solution)}
 \]
 \[
 \max \left(0, \mu - \frac{\gamma}{2} \sigma^2 \right) < \beta^* \quad \text{(all in safe or risky asset)}
 \]
Verification

Lemma

Let \(q \) solve the HJB equation, and define \(Q(y) = \int^y q(z)\,dz \). There exists a probability \(\hat{\mathbb{P}} \), equivalent to \(\mathbb{P} \), such that the terminal wealth \(X_T \) of any admissible strategy satisfies:

\[
E[X_T^{1-\gamma}]^{\frac{1}{1-\gamma}} \leq e^{\beta T + Q(y)} E_{\hat{\mathbb{P}}}[e^{-(1-\gamma)Q(Y_T)}]^{\frac{1}{1-\gamma}},
\]

and equality holds for the optimal strategy.

- Solution of HJB equation yields asymptotic upper bound for any strategy.
- Upper bound reached for optimal strategy.
- Valid for any \(\beta \), for corresponding \(Q \).
- Idea: pick largest \(\beta^* \) to make \(Q \) disappear in the long run.
- A priori bounds:
 \[
 \beta^* < \frac{\mu^2}{2\gamma \sigma^2} \quad \text{(frictionless solution)}
 \]
 \[
 \max \left(0, \mu - \frac{\gamma}{2} \sigma^2 \right) < \beta^* \quad \text{(all in safe or risky asset)}
 \]
Existence

Theorem

Assume $0 < \frac{\mu}{\gamma \sigma^2} < 1$. There exists β^* such that HJB equation has solution $q(y)$ with positive finite limit in 0 and negative finite limit in 1.

- for $\beta > 0$, there exists a unique solution $q_{0,\beta}(y)$ to HJB equation with positive finite limit in 0 (and the limit is $2\sqrt{\lambda \beta}$);
- for $\beta > \mu - \frac{\gamma \sigma^2}{2}$, there exists a unique solution $q_{1,\beta}(y)$ to HJB equation with negative finite limit in 1 (and the limit is $\lambda d - \sqrt{\lambda d(\lambda d - 2)}$, where $d := 2(\mu - \frac{\gamma \sigma^2}{2} - \beta)$);
- there exists β_u such that $q_{0,\beta_u}(y) > q_{1,\beta_u}(y)$ for some y;
- there exists β_l such that $q_{0,\beta_l}(y) < q_{1,\beta_l}(y)$ for some y;
- by continuity and boundedness, there exists $\beta^* \in (\beta_l, \beta_u)$ such that $q_{0,\beta^*}(y) = q_{1,\beta^*}(y)$.
- Boundary conditions are natural!
Existence

Theorem

Assume $0 < \frac{\mu}{\gamma \sigma^2} < 1$. There exists β^* such that HJB equation has solution $q(y)$ with positive finite limit in 0 and negative finite limit in 1.

- for $\beta > 0$, there exists a unique solution $q_{0,\beta}(y)$ to HJB equation with positive finite limit in 0 (and the limit is $2\sqrt{\lambda \beta}$);
- for $\beta > \mu - \frac{\gamma \sigma^2}{2}$, there exists a unique solution $q_{1,\beta}(y)$ to HJB equation with negative finite limit in 1 (and the limit is $\lambda d - \sqrt{\lambda d(\lambda d - 2)}$, where $d := 2(\mu - \frac{\gamma \sigma^2}{2} - \beta)$);
- there exists β_u such that $q_{0,\beta_u}(y) > q_{1,\beta_u}(y)$ for some y;
- there exists β_l such that $q_{0,\beta_l}(y) < q_{1,\beta_l}(y)$ for some y;
- by continuity and boundedness, there exists $\beta^* \in (\beta_l, \beta_u)$ such that $q_{0,\beta^*}(y) = q_{1,\beta^*}(y)$.
- Boundary conditions are natural!
Existence

Theorem

Assume $0 < \frac{\mu}{\gamma \sigma^2} < 1$. There exists β^* such that HJB equation has solution $q(y)$ with positive finite limit in 0 and negative finite limit in 1.

- for $\beta > 0$, there exists a unique solution $q_{0,\beta}(y)$ to HJB equation with positive finite limit in 0 (and the limit is $2\sqrt{\lambda \beta}$);
- for $\beta > \mu - \frac{\gamma \sigma^2}{2}$, there exists a unique solution $q_{1,\beta}(y)$ to HJB equation with negative finite limit in 1 (and the limit is $\lambda d - \sqrt{\lambda d(\lambda d - 2)}$, where $d := 2(\mu - \frac{\gamma \sigma^2}{2} - \beta)$);
- there exists β_u such that $q_{0,\beta_u}(y) > q_{1,\beta_u}(y)$ for some y;
- there exists β_l such that $q_{0,\beta_l}(y) < q_{1,\beta_l}(y)$ for some y;
- by continuity and boundedness, there exists $\beta^* \in (\beta_l, \beta_u)$ such that $q_{0,\beta^*}(y) = q_{1,\beta^*}(y)$.
- Boundary conditions are natural!
Existence

Theorem

Assume $0 < \frac{\mu}{\gamma \sigma^2} < 1$. There exists β^* such that HJB equation has solution $q(y)$ with positive finite limit in 0 and negative finite limit in 1.

- for $\beta > 0$, there exists a unique solution $q_{0,\beta}(y)$ to HJB equation with positive finite limit in 0 (and the limit is $2\sqrt{\lambda \beta}$);
- for $\beta > \mu - \frac{\gamma \sigma^2}{2}$, there exists a unique solution $q_{1,\beta}(y)$ to HJB equation with negative finite limit in 1 (and the limit is $\lambda d - \sqrt{\lambda d(\lambda d - 2)}$, where $d := 2(\mu - \frac{\gamma \sigma^2}{2} - \beta)$);
- there exists β_u such that $q_{0,\beta_u}(y) > q_{1,\beta_u}(y)$ for some y;
- there exists β_l such that $q_{0,\beta_l}(y) < q_{1,\beta_l}(y)$ for some y;
- by continuity and boundedness, there exists $\beta^* \in (\beta_l, \beta_u)$ such that $q_{0,\beta^*}(y) = q_{1,\beta^*}(y)$.
- Boundary conditions are natural!
Existence

Theorem

Assume $0 < \frac{\mu}{\gamma \sigma^2} < 1$. There exists β^* such that HJB equation has solution $q(y)$ with positive finite limit in 0 and negative finite limit in 1.

- for $\beta > 0$, there exists a unique solution $q_{0,\beta}(y)$ to HJB equation with positive finite limit in 0 (and the limit is $2\sqrt{\lambda \beta}$);
- for $\beta > \mu - \frac{\gamma \sigma^2}{2}$, there exists a unique solution $q_{1,\beta}(y)$ to HJB equation with negative finite limit in 1 (and the limit is $\lambda d - \sqrt{\lambda d(\lambda d - 2)}$, where $d := 2(\mu - \frac{\gamma \sigma^2}{2} - \beta)$);
- there exists β_u such that $q_{0,\beta_u}(y) > q_{1,\beta_u}(y)$ for some y;
- there exists β_l such that $q_{0,\beta_l}(y) < q_{1,\beta_l}(y)$ for some y;
- by continuity and boundedness, there exists $\beta^* \in (\beta_l, \beta_u)$ such that $q_{0,\beta^*}(y) = q_{1,\beta^*}(y)$.
- Boundary conditions are natural!
Existence

Theorem

Assume $0 < \frac{\mu}{\gamma \sigma^2} < 1$. There exists β^* such that HJB equation has solution $q(y)$ with positive finite limit in 0 and negative finite limit in 1.

- for $\beta > 0$, there exists a unique solution $q_{0, \beta}(y)$ to HJB equation with positive finite limit in 0 (and the limit is $2\sqrt{\lambda \beta}$);
- for $\beta > \mu - \frac{\gamma \sigma^2}{2}$, there exists a unique solution $q_{1, \beta}(y)$ to HJB equation with negative finite limit in 1 (and the limit is $\lambda d - \sqrt{\lambda d(\lambda d - 2)}$, where $d := 2(\mu - \frac{\gamma \sigma^2}{2} - \beta)$);
- there exists β_u such that $q_{0, \beta_u}(y) > q_{1, \beta_u}(y)$ for some y;
- there exists β_l such that $q_{0, \beta_l}(y) < q_{1, \beta_l}(y)$ for some y;
- by continuity and boundedness, there exists $\beta^* \in (\beta_l, \beta_u)$ such that $q_{0, \beta^*}(y) = q_{1, \beta^*}(y)$.

Boundary conditions are natural!
Existence

Theorem

Assume $0 < \frac{\mu}{\gamma \sigma^2} < 1$. There exists β^* such that HJB equation has solution $q(y)$ with positive finite limit in 0 and negative finite limit in 1.

- for $\beta > 0$, there exists a unique solution $q_{0, \beta}(y)$ to HJB equation with positive finite limit in 0 (and the limit is $2\sqrt{\lambda \beta}$);
- for $\beta > \mu - \frac{\gamma \sigma^2}{2}$, there exists a unique solution $q_{1, \beta}(y)$ to HJB equation with negative finite limit in 1 (and the limit is $\lambda d - \sqrt{\lambda d(\lambda d - 2)}$, where $d := 2(\mu - \frac{\gamma \sigma^2}{2} - \beta)$);
- there exists β_u such that $q_{0, \beta_u}(y) > q_{1, \beta_u}(y)$ for some y;
- there exists β_l such that $q_{0, \beta_l}(y) < q_{1, \beta_l}(y)$ for some y;
- by continuity and boundedness, there exists $\beta^* \in (\beta_l, \beta_u)$ such that $q_{0, \beta^*}(y) = q_{1, \beta^*}(y)$.
- Boundary conditions are natural!
Explosion with Leverage

Theorem

If Y_t that satisfies $Y_0 \in (1, +\infty)$ and

$$dY_t = Y_t(1 - Y_t)(\mu dt - Y_t \sigma^2 dt + \sigma dW_t) + u_t(1 + \lambda Y_t u_t)dt$$

explodes in finite time with positive probability.

- For $y \in [1, +\infty)$, drift bounded below by $\tilde{\mu}(y) := y(1 - y)(\mu - y \sigma^2) - \frac{1}{4\lambda}$.
- Comparison principle: enough to check explosion with lower bound drift.
- Scale function $s(x) = \int_c^x \exp \left(-2 \int_c^y \frac{\tilde{\mu}(z)}{\sigma^2(z)} dz \right) dy$ finite at both 1 and ∞.
- For $y \sim 1$, $\tilde{\mu}(y) \sim -\frac{1}{4\lambda}$ and $\tilde{\sigma}^2(y) \sim \sigma^2(1 - y)^2$.
 For $y \sim \infty$, $\tilde{\mu}(y) \sim \sigma^2 y^3$ and $\tilde{\sigma}^2(y) \sim \sigma^2 y^4$.
- Feller’s test for explosions: check that next integral finite at $z = \infty$.

$$\int_c^z \exp \left(- \int_c^x 2\tilde{\mu}(s) \frac{ds}{\sigma^2(s)} \right) \left(\int_c^x \exp \left(\int_c^y \frac{2\tilde{\mu}(s)}{\sigma^2(s)} ds \right) dy \right) dx$$

- This shows that risky weight Y explodes. What about wealth X?
Explosion with Leverage

Theorem

If Y_t that satisfies $Y_0 \in (1, +\infty)$ and

$$dY_t = Y_t(1 - Y_t)(\mu dt - Y_t\sigma^2 dt + \sigma dW_t) + u_t(1 + \lambda Y_t u_t) dt$$

explodes in finite time with positive probability.

- For $y \in [1, +\infty)$, drift bounded below by $\tilde{\mu}(y) := y(1 - y)(\mu - y\sigma^2) - \frac{1}{4\lambda}$.
- Comparison principle: enough to check explosion with lower bound drift.
- Scale function $s(x) = \int_c^x \exp \left(-2 \int_c^y \frac{\tilde{\mu}(z)}{\sigma^2(z)} dz \right) dy$ finite at both 1 and ∞.
- For $y \sim 1$, $\tilde{\mu}(y) \sim -\frac{1}{4\lambda}$ and $\tilde{\sigma}^2(y) \sim \sigma^2(1 - y)^2$.
 - For $y \sim \infty$, $\tilde{\mu}(y) \sim \sigma^2 y^3$ and $\tilde{\sigma}^2(y) \sim \sigma^2 y^4$.
- Feller’s test for explosions: check that next integral finite at $z = \infty$.

$$\int_c^z \exp \left(- \int_c^x \frac{2\tilde{\mu}(s)}{\sigma^2(s)} ds \right) \left(\int_c^x \exp \left(\int_c^y \frac{2\tilde{\mu}(s)}{\sigma^2(s)} ds \right) \frac{\sigma^2(s)}{\sigma^2(y)} dy \right) dx$$

- This shows that risky weight Y explodes. What about wealth X?
Explosion with Leverage

Theorem

If Y_t that satisfies $Y_0 \in (1, +\infty)$ and

$$dY_t = Y_t(1 - Y_t)(\mu dt - Y_t\sigma^2 dt + \sigma dW_t) + u_t(1 + \lambda Y_t u_t) dt$$

explodes in finite time with positive probability.

- For $y \in [1, +\infty)$, drift bounded below by $\tilde{\mu}(y) := y(1 - y)(\mu - y\sigma^2) - \frac{1}{4\lambda}$.
- Comparison principle: enough to check explosion with lower bound drift.
- Scale function $s(x) = \int_c^x \exp \left(-2 \int_c^y \frac{\tilde{\mu}(z)}{\sigma^2(z)} dz \right) dy$ finite at both 1 and ∞.
- For $y \sim 1$, $\tilde{\mu}(y) \sim -\frac{1}{4\lambda}$ and $\tilde{\sigma}^2(y) \sim \sigma^2(1 - y)^2$.
- For $y \sim \infty$, $\tilde{\mu}(y) \sim \sigma^2 y^3$ and $\tilde{\sigma}^2(y) \sim \sigma^2 y^4$.
- Feller’s test for explosions: check that next integral finite at $z = \infty$.

$$\int_c^z \exp \left(- \int_c^x \frac{2\tilde{\mu}(s)}{\sigma^2(s)} ds \right) \left(\int_c^x \frac{\exp \left(\int_c^y \frac{2\tilde{\mu}(s)}{\sigma^2(s)} ds \right) dy}{\sigma^2(y)} \right) dx$$

- This shows that risky weight Y explodes. What about wealth X?
Explosion with Leverage

Theorem

If Y_t that satisfies $Y_0 \in (1, +\infty)$ and

$$dY_t = Y_t(1 - Y_t)(\mu dt - Y_t\sigma^2 dt + \sigma dW_t) + u_t(1 + \lambda Y_t u_t) dt$$

explodes in finite time with positive probability.

- For $y \in [1, +\infty)$, drift bounded below by $\tilde{\mu}(y) := y(1 - y)(\mu - y\sigma^2) - \frac{1}{4\lambda}$.
- Comparison principle: enough to check explosion with lower bound drift.
- Scale function $s(x) = \int_c^x \exp \left(-2 \int_c^y \frac{\tilde{\mu}(z)}{\sigma^2(z)} dz \right) dy$ finite at both 1 and ∞.
 - For $y \sim 1$, $\tilde{\mu}(y) \sim -\frac{1}{4\lambda}$ and $\tilde{\sigma}^2(y) \sim \sigma^2(1 - y)^2$.
 - For $y \sim \infty$, $\tilde{\mu}(y) \sim \sigma^2 y^3$ and $\tilde{\sigma}^2(y) \sim \sigma^2 y^4$.
- Feller's test for explosions: check that next integral finite at $z = \infty$.

$$\int_c^z \exp \left(- \int_c^x \frac{2\tilde{\mu}(s)}{\sigma^2(s)} ds \right) \left(\int_c^x \frac{\exp \left(\int_c^y \frac{2\tilde{\mu}(s)}{\sigma^2(s)} ds \right)}{\sigma^2(y)} dy \right) dx$$

- This shows that risky weight Y explodes. What about wealth X?
Explosion with Leverage

Theorem

If \(Y_t \) that satisfies \(Y_0 \in (1, +\infty) \) and

\[
dY_t = Y_t(1 - Y_t)(\mu dt - Y_t\sigma^2 dt + \sigma dW_t) + u_t(1 + \lambda Y_t u_t) dt
\]

explodes in finite time with positive probability.

- For \(y \in [1, +\infty) \), drift bounded below by \(\tilde{\mu}(y) := y(1 - y)(\mu - y\sigma^2) - \frac{1}{4\lambda} \).
- Comparison principle: enough to check explosion with lower bound drift.
- Scale function \(s(x) = \int_c^x \exp \left(-2 \int_c^y \frac{\tilde{\mu}(z)}{\sigma^2(z)} dz \right) dy \) finite at both 1 and \(\infty \).
- For \(y \sim 1 \), \(\tilde{\mu}(y) \sim -\frac{1}{4\lambda} \) and \(\tilde{\sigma}^2(y) \sim \sigma^2(1 - y)^2 \).
- For \(y \sim \infty \), \(\tilde{\mu}(y) \sim \sigma^2 y^3 \) and \(\tilde{\sigma}^2(y) \sim \sigma^2 y^4 \).
- Feller’s test for explosions: check that next integral finite at \(z = \infty \).

\[
\int_c^z \exp \left(- \int_c^x 2\tilde{\mu}(s) \frac{ds}{\sigma^2(s)} \right) \left(\int_c^x \exp \left(\int_c^y \frac{2\tilde{\mu}(s)}{\sigma^2(s)} ds \right) \frac{dy}{\sigma^2(y)} \right) dx
\]

- This shows that risky weight \(Y \) explodes. What about wealth \(X \)?
EXPLOSION WITH LEVERAGE

Theorem

If Y_t that satisfies $Y_0 \in (1, +\infty)$ and

$$dY_t = Y_t(1 - Y_t)(\mu dt - Y_t\sigma^2 dt + \sigma dW_t) + u_t(1 + \lambda Y_t u_t) dt$$

explodes in finite time with positive probability.

- For $y \in [1, +\infty)$, drift bounded below by $\tilde{\mu}(y) := y(1 - y)(\mu - y\sigma^2) - \frac{1}{4\lambda}$.
- Comparison principle: enough to check explosion with lower bound drift.
- Scale function $s(x) = \int_c^x \exp \left(-2 \int_c^y \frac{\tilde{\mu}(z)}{\sigma^2(z)} dz \right) dy$ finite at both 1 and ∞.
- For $y \sim 1$, $\tilde{\mu}(y) \sim -\frac{1}{4\lambda}$ and $\tilde{\sigma}^2(y) \sim \sigma^2(1 - y)^2$.
 For $y \sim \infty$, $\tilde{\mu}(y) \sim \sigma^2 y^3$ and $\tilde{\sigma}^2(y) \sim \sigma^2 y^4$.
- Feller’s test for explosions: check that next integral finite at $z = \infty$.

$$\int_c^z \exp \left(- \int_c^x \frac{2\tilde{\mu}(s)}{\sigma^2(s)} ds \right) \left(\int_c^x \frac{\int_c^y \frac{2\tilde{\mu}(s)}{\sigma^2(s)} ds}{\sigma^2(y)} dy \right) dx$$

- This shows that risky weight Y explodes. What about wealth X?
Explosion with Leverage

Theorem

If Y_t that satisfies $Y_0 \in (1, +\infty)$ and

$$dY_t = Y_t(1 - Y_t)(\mu dt - Y_t\sigma^2 dt + \sigma dW_t) + u_t(1 + \lambda Y_t u_t)dt$$

explodes in finite time with positive probability.

- For $y \in [1, +\infty)$, drift bounded below by $\tilde{\mu}(y) := y(1 - y)(\mu - y\sigma^2) - \frac{1}{4\lambda}$.
- Comparison principle: enough to check explosion with lower bound drift.
- Scale function $s(x) = \int_c^x \exp \left(-2 \int_c^y \frac{\tilde{\mu}(z)}{\sigma^2(z)} dz \right) dy$ finite at both 1 and ∞.
- For $y \sim 1$, $\tilde{\mu}(y) \sim -\frac{1}{4\lambda}$ and $\tilde{\sigma}^2(y) \sim \sigma^2(1 - y)^2$.
 For $y \sim \infty$, $\tilde{\mu}(y) \sim \sigma^2 y^3$ and $\tilde{\sigma}^2(y) \sim \sigma^2 y^4$.
- Feller’s test for explosions: check that next integral finite at $z = \infty$.

$$\int_c^z \exp \left(- \int_c^x \frac{2\tilde{\mu}(s)}{\sigma^2(s)} ds \right) \left(\int_c^x \exp \left(\int_c^y \frac{2\tilde{\mu}(s)}{\sigma^2(s)} ds \right) \frac{1}{\sigma^2(y)} dy \right) dx$$

- This shows that risky weight Y explodes. What about wealth X?
Bankruptcy

• τ explosion time for Y_t. Show that $X_\tau(\omega) = 0$ on $\omega \in \{\tau < +\infty\}$.

• By contradiction, suppose $X_t(\omega)$ does not hit 0 on $[0, \tau(\omega)]$.

$$X_T = xe^{\int_0^T (Y_t\mu - \lambda u_t^2 - \frac{\sigma^2}{2} Y_t^2) dt + \sigma \int_0^T Y_t dW_t}.$$

• If $\int_0^\tau Y_t^2 dt = \infty$, then $-\int_0^\tau \frac{\sigma^2}{2} Y_t^2 dt + \int_0^\tau Y_t \sigma dW_t = -\infty$ by LLN.

• If $\int_0^\tau Y_t^2 dt < \infty$, define measure $\frac{d\bar{P}}{dP} = \exp\left(-\int_0^\tau \frac{\sigma^2}{2} Y_t^2 dt + \int_0^\tau Y_t \sigma dW_t\right)$

• In both cases, check that $\int_0^\tau (Y_t \mu - \lambda u_t^2) dt = -\infty$.

• $0 < \epsilon(\omega) < \frac{S_t}{X_t}(\omega) < M(\omega)$ on $[0, \tau(\omega)]$, hence:

$$\lim_{T \to \tau} \int_0^T (Y_t \mu - \lambda u_t^2) dt < \lim_{T \to \tau} M\mu \int_0^T \theta_t dt - \lambda \epsilon^2 \int_0^T \dot{\theta}_t^2 dt$$

$$= \left(\lim_{T \to \tau} \int_0^T \dot{\theta}_t^2 dt\right) \left(M\mu \lim_{T \to \tau} \frac{\int_0^T \theta_t dt}{\int_0^T \dot{\theta}_t^2 dt} - \lambda \epsilon^2\right) = -\infty.$$
Bankruptcy

- τ explosion time for Y_t. Show that $X_\tau(\omega) = 0$ on $\omega \in \{\tau < +\infty\}$.
- By contradiction, suppose $X_t(\omega)$ does not hit 0 on $[0, \tau(\omega)]$.

$$X_T = xe^{\int_0^T (Y_\tau \mu - \lambda u_t^2 - \frac{\sigma^2}{2} Y_t^2) dt + \sigma \int_0^T Y_t dW_t}.$$

- If $\int_0^T Y_t^2 dt = \infty$, then $-\int_0^T \frac{\sigma^2}{2} Y_t^2 dt + \int_0^T Y_t \sigma dW_t = -\infty$ by LLN.
- If $\int_0^T Y_t^2 dt < \infty$, define measure $\frac{d\tilde{P}}{dP} = \exp \left(-\int_0^T \frac{\sigma^2}{2} Y_t^2 dt + \int_0^T Y_t \sigma dW_t \right)$
- In both cases, check that $\int_0^T (Y_t \mu - \lambda u_t^2) dt = -\infty$.
- $0 < \epsilon(\omega) < \frac{S_t}{X_t}(\omega) < M(\omega)$ on $[0, \tau(\omega)]$, hence:

$$\lim_{T \to \tau} \int_0^T (Y_t \mu - \lambda u_t^2) dt < \lim_{T \to \tau} M \mu \int_0^T \theta_t dt - \lambda \epsilon^2 \int_0^T \dot{\theta}_t^2 dt$$

$$= \left(\lim_{T \to \tau} \int_0^T \dot{\theta}_t^2 dt \right) \left(M \mu \lim_{T \to \tau} \frac{\int_0^T \theta_t dt}{\int_0^T \dot{\theta}_t^2 dt} - \lambda \epsilon^2 \right) = -\infty.$$
Bankruptcy

- τ explosion time for Y_t. Show that $X_\tau(\omega) = 0$ on $\omega \in \{\tau < +\infty\}$.
- By contradiction, suppose $X_t(\omega)$ does not hit 0 on $[0, \tau(\omega)]$.

$$X_T = xe^{\int_0^T (Y_t - Y_t^2 - \frac{\sigma^2}{2} Y_t^2) dt + \sigma \int_0^T Y_t dW_t}.$$

- If $\int_0^T Y_t^2 dt = \infty$, then $-\int_0^T \frac{\sigma^2}{2} Y_t^2 dt + \int_0^T Y_t \sigma dW_t = -\infty$ by LLN.
- If $\int_0^T Y_t^2 dt < \infty$, define measure $\frac{d\bar{P}}{dP} = \exp \left(-\int_0^T \frac{\sigma^2}{2} Y_t^2 dt + \int_0^T Y_t \sigma dW_t \right)$
- In both cases, check that $\int_0^T (Y_t - Y_t^2) dt = -\infty$.

$$0 < \epsilon(\omega) < \frac{S_t}{X_t}(\omega) < M(\omega) \text{ on } [0, \tau(\omega)], \text{ hence:}$$

$$\lim_{T \to \tau} \int_0^T (Y_t - Y_t^2) dt < \lim_{T \to \tau} M \mu \int_0^T \theta_t dt - \lambda \epsilon^2 \int_0^T \dot{\theta}_t^2 dt$$

$$= \left(\lim_{T \to \tau} \int_0^T \dot{\theta}_t^2 dt \right) \left(M \mu \lim_{T \to \tau} \frac{\int_0^T \theta_t dt}{\int_0^T \dot{\theta}_t^2 dt} - \lambda \epsilon^2 \right) = -\infty.$$
Bankruptcy

- \(\tau \) explosion time for \(Y_t \). Show that \(X_\tau(\omega) = 0 \) on \(\omega \in \{ \tau < +\infty \} \).
- By contradiction, suppose \(X_t(\omega) \) does not hit 0 on \([0, \tau(\omega)]\).

\[
X_T = xe^{\int_0^T (Y_t\mu - \lambda u_t^2 - \frac{\sigma^2}{2} Y_t^2) dt + \sigma \int_0^T Y_t dW_t}.
\]

- If \(\int_0^\tau Y_t^2 dt = \infty \), then \(-\int_0^\tau \frac{\sigma^2}{2} Y_t^2 dt + \int_0^\tau Y_t \sigma dW_t = -\infty \) by LLN.
- If \(\int_0^\tau Y_t^2 dt < \infty \), define measure \(\frac{d\bar{P}}{dP} = \exp \left(-\int_0^\tau \frac{\sigma^2}{2} Y_t^2 dt + \int_0^\tau Y_t \sigma dW_t \right)\]

In both cases, check that \(\int_0^\tau (Y_t\mu - \lambda u_t^2) dt = -\infty \).

- \(0 < \epsilon(\omega) < \frac{S_t}{X_t}(\omega) < M(\omega) \) on \([0, \tau(\omega)]\), hence:

\[
\lim_{T \to \tau} \int_0^T (Y_t\mu - \lambda u_t^2) dt < \lim_{T \to \tau} M\mu \int_0^T \theta_t dt - \lambda \epsilon^2 \int_0^T \dot{\theta}_t^2 dt
\]

\[
= \left(\lim_{T \to \tau} \int_0^T \dot{\theta}_t^2 dt \right) \left(M\mu \lim_{T \to \tau} \frac{\int_0^T \theta_t dt}{\int_0^T \dot{\theta}_t^2 dt} - \lambda \epsilon^2 \right) = -\infty.
\]
Bankruptcy

- τ explosion time for Y_t. Show that $X_\tau(\omega) = 0$ on $\omega \in \{\tau < +\infty\}$.
- By contradiction, suppose $X_t(\omega)$ does not hit 0 on $[0, \tau(\omega)]$.

$$X_T = xe^{\int_0^T \left(Y_t \mu - \lambda u_t^2 - \frac{\sigma^2}{2} Y_t^2 \right) dt + \sigma \int_0^T Y_t dW_t}.$$

- If $\int_0^\tau Y_t^2 dt = \infty$, then $- \int_0^\tau \frac{\sigma^2}{2} Y_t^2 dt + \int_0^\tau Y_t \sigma dW_t = -\infty$ by LLN.
- If $\int_0^\tau Y_t^2 dt < \infty$, define measure $\frac{d\bar{P}}{dP} = \exp \left(- \int_0^\tau \frac{\sigma^2}{2} Y_t^2 dt + \int_0^\tau Y_t \sigma dW_t \right)$
- In both cases, check that $\int_0^\tau (Y_t \mu - \lambda u_t^2) dt = -\infty$.

- $0 < \epsilon(\omega) < \frac{S_t}{X_t}(\omega) < M(\omega)$ on $[0, \tau(\omega)]$, hence:

$$\lim_{T \to \tau} \int_0^T (Y_t \mu - \lambda u_t^2) dt \leq \lim_{T \to \tau} M \mu \int_0^T \theta_t dt - \lambda \epsilon^2 \int_0^T \dot{\theta}_t^2 dt$$

$$= \left(\lim_{T \to \tau} \int_0^T \dot{\theta}_t^2 dt \right) \left(M \mu \lim_{T \to \tau} \frac{\int_0^T \theta_t dt}{\int_0^T \dot{\theta}_t^2 dt} - \lambda \epsilon^2 \right) = -\infty.$$
Bankruptcy

- τ explosion time for Y_t. Show that $X_\tau(\omega) = 0$ on $\omega \in \{\tau < +\infty\}$.
- By contradiction, suppose $X_t(\omega)$ does not hit 0 on $[0, \tau(\omega)]$.

$$X_T = xe^{\int_0^T (Y_t\mu - \lambda u_t^2 - \frac{\sigma^2}{2} Y_t^2) dt + \sigma \int_0^T Y_t \text{d}W_t}.$$

- If $\int_0^\tau Y_t^2 dt = \infty$, then $-\int_0^\tau \frac{\sigma^2}{2} Y_t^2 dt + \int_0^\tau Y_t \sigma \text{d}W_t = -\infty$ by LLN.
- If $\int_0^\tau Y_t^2 dt < \infty$, define measure $\frac{d\bar{P}}{dP} = \exp\left(-\int_0^\tau \frac{\sigma^2}{2} Y_t^2 dt + \int_0^\tau Y_t \sigma \text{d}W_t\right)$

In both cases, check that $\int_0^\tau (Y_t\mu - \lambda u_t^2) dt = -\infty$.

- $0 < \epsilon(\omega) < \frac{S_t}{X_t}(\omega) < M(\omega)$ on $[0, \tau(\omega)]$, hence:

$$\lim_{T \to \tau} \int_0^T (Y_t\mu - \lambda u_t^2) dt < \lim_{T \to \tau} M\mu \int_0^T \theta_t dt - \lambda \epsilon^2 \int_0^T \dot{\theta}_t^2 dt = \left(\lim_{T \to \tau} \int_0^T \dot{\theta}_t^2 dt\right) \left(M\mu \lim_{T \to \tau} \frac{\int_0^T \theta_t dt}{\int_0^T \dot{\theta}_t^2 dt} - \lambda \epsilon^2\right) = -\infty.$$
Optimality

- Check that $Y_t \equiv 1$ optimal if $\frac{\mu}{\gamma \sigma^2} > 1$.
- By Itô's formula,
 \[
 X_T^{1-\gamma} = x^{1-\gamma} e^{(1-\gamma) \int_0^T (Y_t \mu - \frac{1}{2} Y_t^2 \sigma^2 - \lambda u_t^2) dt + (1-\gamma) \int_0^T Y_t \sigma dW_t}.
 \]
- and hence, for $g(y, u) = y\mu - \frac{1}{2} y^2 \gamma \sigma^2 - \lambda u^2$,
 \[
 E[X_T^{1-\gamma}] = x^{1-\gamma} E_\hat{P} \left[e^{\int_0^T (1-\gamma) g(Y_t,u_t)dt} \right],
 \]
 where $\frac{d\hat{P}}{dP} = \exp\{\int_0^T -\frac{1}{2} Y_t^2 (1-\gamma)^2 \sigma^2 dt + \int_0^T Y_t (1-\gamma) \sigma dW_t\}$.
- $g(y, u)$ on $[0, 1] \times \mathbb{R}$ has maximum $g(1, 0) = \mu - \frac{1}{2} \gamma \sigma^2$ at $(1, 0)$.
- Since $Y_t \equiv 1$ and $u_t \equiv 0$ is admissible, it is also optimal.
Optimality

- Check that $Y_t \equiv 1$ optimal if $\frac{\mu}{\gamma \sigma^2} > 1$.
- By Itô’s formula,
 \[
 X_T^{1-\gamma} = x^{1-\gamma} e^{(1-\gamma) \int_0^T (Y_t \mu - \frac{1}{2} Y_t^2 \sigma^2 - \lambda u_t^2) \, dt + (1-\gamma) \int_0^T Y_t \sigma \, dW_t}.
 \]
 and hence, for $g(y, u) = y \mu - \frac{1}{2} y^2 \gamma \sigma^2 - \lambda u^2$,
 \[
 E[X_T^{1-\gamma}] = x^{1-\gamma} E_{\hat{P}} \left[e^{\int_0^T (1-\gamma) g(Y_t, u_t) \, dt} \right],
 \]
 where $\frac{d\hat{P}}{dP} = \exp\{\int_0^T -\frac{1}{2} Y_t^2 (1-\gamma)^2 \sigma^2 \, dt + \int_0^T Y_t (1-\gamma) \sigma \, dW_t\}$.
- $g(y, u)$ on $[0, 1] \times \mathbb{R}$ has maximum $g(1, 0) = \mu - \frac{1}{2} \gamma \sigma^2$ at $(1, 0)$.
- Since $Y_t \equiv 1$ and $u_t \equiv 0$ is admissible, it is also optimal.
Optimality

- Check that $Y_t \equiv 1$ optimal if $\frac{\mu}{\gamma \sigma^2} > 1$.
- By Itô’s formula,

$$X_t^{1-\gamma} = x^{1-\gamma} e^{(1-\gamma) \int_0^T (Y_t \mu - \frac{1}{2} Y_t^2 \sigma^2 - \lambda u_t^2) dt + (1-\gamma) \int_0^T Y_t \sigma dW_t},$$

- and hence, for $g(y, u) = y \mu - \frac{1}{2} y^2 \gamma \sigma^2 - \lambda u^2$,

$$E[X_T^{1-\gamma}] = x^{1-\gamma} E_{\hat{P}} \left[e^{\int_0^T (1-\gamma) g(Y_t, u_t) dt} \right],$$

where $\frac{d\hat{P}}{dP} = \exp\{\int_0^T -\frac{1}{2} Y_t^2 (1-\gamma)^2 \sigma^2 dt + \int_0^T Y_t (1-\gamma) \sigma dW_t\}$.
- $g(y, u)$ on $[0, 1] \times \mathbb{R}$ has maximum $g(1, 0) = \mu - \frac{1}{2} \gamma \sigma^2$ at $(1, 0)$.
- Since $Y_t \equiv 1$ and $u_t \equiv 0$ is admissible, it is also optimal.
Optimality

- Check that $Y_t \equiv 1$ optimal if $\frac{\mu}{\gamma \sigma^2} > 1$.
- By Itô's formula,
 $$X_T^{1-\gamma} = x^{1-\gamma} e^{(1-\gamma) \int_0^T (Y_t \mu - \frac{1}{2} Y_t^2 \sigma^2 - \lambda u_t^2) dt + (1-\gamma) \int_0^T Y_t \sigma dW_t}.$$
- and hence, for $g(y, u) = y \mu - \frac{1}{2} y^2 \gamma \sigma^2 - \lambda u^2$,
 $$E[X_T^{1-\gamma}] = x^{1-\gamma} E_{\hat{P}} \left[e^{\int_0^T (1-\gamma) g(Y_t, u_t) dt} \right],$$
 where $\frac{d\hat{P}}{dP} = \exp \{ \int_0^T -\frac{1}{2} Y_t^2 (1-\gamma)^2 \sigma^2 dt + \int_0^T Y_t (1-\gamma) \sigma dW_t \}$.
- $g(y, u)$ on $[0, 1] \times \mathbb{R}$ has maximum $g(1, 0) = \mu - \frac{1}{2} \gamma \sigma^2$ at $(1, 0)$.
- Since $Y_t \equiv 1$ and $u_t \equiv 0$ is admissible, it is also optimal.
Optimality

- Check that \(Y_t \equiv 1 \) optimal if \(\frac{\mu}{\gamma \sigma^2} > 1 \).
- By Itô’s formula,

\[
X_T^{1-\gamma} = x^{1-\gamma} e^{(1-\gamma) \int_0^T (Y_t \mu - \frac{1}{2} Y_t^2 \sigma^2 - \lambda u_t^2) dt + (1-\gamma) \int_0^T Y_t \sigma dW_t}.
\]

- and hence, for \(g(y, u) = y \mu - \frac{1}{2} y^2 \gamma \sigma^2 - \lambda u^2 \),

\[
E[X_T^{1-\gamma}] = x^{1-\gamma} E_{\tilde{P}} \left[e^{\int_0^T (1-\gamma) g(Y_t, u_t) dt} \right],
\]

where \(\frac{d\tilde{P}}{dP} = \exp \{ \int_0^T -\frac{1}{2} Y_t^2 (1 - \gamma)^2 \sigma^2 dt + \int_0^T Y_t (1 - \gamma) \sigma dW_t \} \).

- \(g(y, u) \) on \([0, 1] \times \mathbb{R}\) has maximum \(g(1, 0) = \mu - \frac{1}{2} \gamma \sigma^2 \) at \((1, 0)\).
- Since \(Y_t \equiv 1 \) and \(u_t \equiv 0 \) is admissible, it is also optimal.
Conclusion

- Finite market depth. Execution price linear in volume as wealth turnover.
- Representative agent with constant relative risk aversion.
- Base price geometric Brownian Motion.
- Trade towards frictionless portfolio.
- Dynamics for trading volume.
- Do not lever an illiquid asset!
Conclusion

- Finite market depth. Execution price linear in volume as wealth turnover.
- Representative agent with constant relative risk aversion.
 - Base price geometric Brownian Motion.
 - Trade towards frictionless portfolio.
 - Dynamics for trading volume.
 - Do not lever an illiquid asset!
Conclusion

- Finite market depth. Execution price linear in volume as wealth turnover.
- Representative agent with constant relative risk aversion.
- Base price geometric Brownian Motion.
- Trade towards frictionless portfolio.
- Dynamics for trading volume.
- Do not lever an illiquid asset!
Conclusion

- Finite market depth. Execution price linear in volume as wealth turnover.
- Representative agent with constant relative risk aversion.
- Base price geometric Brownian Motion.
- Trade towards frictionless portfolio.
- Dynamics for trading volume.
- Do not lever an illiquid asset!
Conclusion

- Finite market depth. Execution price linear in volume as wealth turnover.
- Representative agent with constant relative risk aversion.
- Base price geometric Brownian Motion.
- Trade towards frictionless portfolio.
- Dynamics for trading volume.
- Do not lever an illiquid asset!
Conclusion

- Finite market depth. Execution price linear in volume as wealth turnover.
- Representative agent with constant relative risk aversion.
- Base price geometric Brownian Motion.
- Trade towards frictionless portfolio.
- Dynamics for trading volume.
- Do not lever an illiquid asset!
ERC Starting Grant

Market Frictions in Mathematical Finance

Dublin City University

Ph.D. and postdoc positions available.

paolo.guasoni@dcu.ie