Multi-Level Edge Separator Using a Hybrid Combinatorial-Quadratic Programming Approach

Nuri Yeralan, Timothy A. Davis, and William Hager

University of Florida
Graph Partitioning Problem

• Partition an undirected graph into 2 subgraphs
• Minimize the sum of edge weights in cut set
• Maintain target partition balance
• NP Hard
Multi-Level Partitioning

- **Coarsen** the input to reduce problem size
- **Cut** the coarsest graph
- **Refine** back to the original input
Multi-Level Partitioning

coarsen

cut

refine

coarsen

refine
Multi-Level Partitioning

- Variations
 - “V” cycle
 - Single sweep, down and up
 - “W” cycle
 - Refine & alternate between deepest levels
- Randomization
 - Bifurcate on way down
 - Select best of alternatives on way up
 - Parallelism!
Coarsening

• Goals
 – Reduce problem size
 – Remove heavy edges
Matching

• Glue two or more vertices together
 – Update connectivity as set union of adjacency lists summing edge weights
 – Sum the node weights
Matching Strategies

• Random Matching (RM)
 – Match vertices across the graph at random

• Heavy Edge Matching (HEM)
 – Traverse adjacency lists of unmatched vertices and match to the heaviest unmatched neighbor.

• Heaviest Edge Matching (SHEM)
 – Sort edges in decreasing order by edge weight
 – Perform valid matches in order
Matching Strategies

• Heavy Triangle Matching (HTM)
 – Do a local 2-step BFS on unmatched vertices
 – Match the heaviest valid triangle
 – (Treat absence of edge as 0-weight edge)

• Heaviest Clique Matching (HCM)
 – Find and sort 3-cliques in descending order of sum of edge weights
 – Perform valid matches in order

• Many More!
Matching Strategies

• Pitfalls
 – Some matching strategies are expensive
 • SHEM, HCM, HTM
 – No compression guarantees
 • High degree vertices, “stars” are notorious
 • Villain:
Matching Strategies

• “Brotherly” Matching
 – Match topologically close vertices through a common neighbor
 – Ex:
Matching Strategies

• “Brotherly” Matching
 – Match topologically close vertices through a common neighbor
 – Ex:
Matching Strategies

• “Brotherly” Matching
 – Match topologically close vertices through a common neighbor
 – Ex:
Matching Strategies

• “Brotherly” Matching
 – Match topologically close vertices through a common neighbor
 – Ex:

![Diagram showing "Brotherly" matching with topologically close vertices connected through a common neighbor]
Matching Strategies

- “Adoption” Matching
 - Toss another vertex into an existing 2-way match
 - Ex:

```
HEM
```

“Brotherly”
Matching Strategies

• “Adoption” Matching
 – Toss another vertex into an existing 2-way match
 – Ex:
Matching Strategies

• “Adoption” Matching
 – Toss another vertex into an existing 2-way match
 – Ex:

n=9

n=4
Matching Strategies

• To ensure productive coarsening, we want a bound on the number of coarsening phases.
• Can we guarantee $O(\log n)$ coarsening phases?
Matching Strategies

• “Community” Matching
 – After an adoption, if a second adoption is required at the same match site, match the old adoptee with the new adoptee.
 – Ex:
Matching Strategies

• “Community” Matching
 – After an adoption, if a second adoption is required at the same match site, match the old adoptee with the new adoptee.
 – Ex:

![Diagram](attachment:Matching_diagram.png)
Matching Strategies

• “Community” Matching
 – After an adoption, if a second adoption is required at the same match site, match the old adoptee with the new adoptee.
 – Ex:
Matching Strategies

• “Community” Matching
 – After an adoption, if a second adoption is required at the same match site, match the old adoptee with the new adoptee.
 – Ex:
Matching Strategies

• “Community” Matching
 – After an adoption, if a second adoption is required at the same match site, match the old adoptee with the new adoptee.
 – Ex:
Matching Strategies

• “Community” Matching
 – After an adoption, if a second adoption is required at the same match site, match the old adoptee with the new adoptee.
 – Ex:
Matching Strategies

• “Community” Matching
 – After an adoption, if a second adoption is required at the same match site, match the old adoptee with the new adoptee.
 – Ex:
“Community” Matching

- After an adoption, if a second adoption is required at the same match site, match the old adoptee with the new adoptee.

- Ex:
Matching Strategies

• “Community” Matching
 – After an adoption, if a second adoption is required at the same match site, match the old adoptee with the new adoptee.
 – Ex:

 – Equivalent to a brotherly match at the next level.
Initial Cut

- Random
- Clustering
- BFS-based
- Brute Force
Refinement

• Pass the partition choices up
• Swap vertex partitions
 – Kernighan-Lin (‘70)
 – Fiduccia-Mattheyses (‘82)
• Maintain balance
Mongoose - Overview

- Nuri Yeralan, Tim Davis, William Hager
- Hybrid graph partitioner
 - combinatorial & quadratic programming
- Single-threaded
- No randomization
- Handles floating point weights
- Interoperability with MATLAB, GraphViz, SuiteSparse, QPDelta
Mongoose - Coarsening

• Matching
 – “Jumpstart” HEM while building coarse graphs
 – Pass over unmatched vertices
 • Note: All neighbors of unmatched vertices are matched.
 – Select heaviest matched neighbor
 – Perform brotherly matching
 – Adopt/Community match orphaned vertices
 – Guarantees O(log n) coarsening levels
Mongoose - Coarsening

• Matching
 – In practice, we initiate brotherly matching if the vertex’s degree exceeds twice the average.
 – Still productive (empirically) but no guarantee
Mongoose – Initial Cut

• Single Pseudoperipheral
 – Find a Pseudoperipheral Node (George ‘79)
 – Collect vertices into one partition using a BFS from a pseudoperipheral node until the partition exceeds the desired size.
 – Vertices sitting on the cut are considered “boundary” vertices and placed into a heap corresponding to their partition.
Mongoose - Refinement

• Boundary Fiduccia-Mattheyes
 – One heap per partition stores boundary vertices.
 – An entry’s value is the result of an objective function combining FM gains with a linear balance penalty
 • Incorporates user-defined balance ratio and tolerance
 • Allows otherwise infeasible moves
 – Inspect the top 3 elements of each heap and swap the vertex with the highest heuristic value.
 – Karypis and Kumar introduced boundary KL in ‘97.
Mongoose - Refinement

• Use optimization to solidify balance constraints and make moves that combinatorial methods miss.

• Quadratic Programming Formulation of the Graph Partitioning Problem (Hager ‘99)
 – minimize: \((1 - x)^T(A + D)x\)
 • D is a diagonal matrix such that \(d_{ii} + d_{jj} \geq a_{ij}\)
 • Mongoose sets \(d_{ii}\) to the sum of i’s edge weights.
 – subject to: \(0 \leq x \leq 1, 1^T x = m\)
 • \(m\): desired node weight for one partition
Mongoose - Refinement

• QP Formulation: Gradient Projection
 – Compute a gradient vector at each vertex
 • \(\text{Grad} = \left(0.5 - x^T\right)D + (0.5 - x^T)A \)
 – \(x_i \in [0,1] \) represents vertex \(i \)'s partition choice
 – Move along the gradient
 – Project back onto feasible set
Mongoose In Action

• Mongoose cut of **1138_bus** from the UF Sparse Matrix Library (Davis ‘10)
 – n = 1138
 – nz = 4054
 – Power network problem (bus power system) submitted by D. Tylavsky (‘87)

• GraphViz is used to render using a force-directed layout (AT&T Research, ‘88)
Boundary FM never finds this
QP makes a subtle adjustment
QP makes a subtle adjustment
Results: Set 1, Hodgepodge

• 1550 square matrices
• Between 15 and 2mil edges
• Come from a variety of contexts
 – Optimization, fluid dynamics, quantum mechanics, PDE, circuit simulation, power line networks, 2d & 3d mesh, etc
Profile: Timing
1550 General Problems: FM, QP, Hybrid

- FM-Only
- QP-Only
- Hybrid
Profile: Cut Quality
1550 General Problems: FM, QP, Hybrid

- FM-Only
- Hybrid
- QP-Only
Remarks

• The quadratic programming formulation seems to work well in a multi-level setting.

• Combining the combinatorial method with the quadratic programming formulation is superior to either by itself.

• How well does Mongoose perform against contemporary partitioners?
 – METIS 5.0.2
Profile: Timing

1550 General Problems: METIS 5, Mongoose

![Graph showing comparison between Mongoose and METIS 5.0.2]
Profile: Cut Quality

1550 General Problems: METIS 5, Mongoose
Remarks

• In the general case, Mongoose seems to perform on par with METIS 5.0.2 in both performance and cut quality.
Results: Set 2, Power Law Graphs

• 25 square matrices
• Between 1mil and 10 mil edges
• Come from social networking, web networks
Profile: Timing
25 Power Law Problems: FM, QP, Hybrid
Profile: Cut Quality
25 Power Law Problems: FM, QP, Hybrid
Remarks

• Providing gradient projection with an good guess via boundary-FM reduces the overall cost of the hybrid approach
 – Synergy – FM and QP mutually help each other
• Hybrid approach tends to find better cuts
• How well does Mongoose perform against contemporary partitioners?
 – METIS 5.0.2
Profile: Timing

25 Power Law Problems: METIS 5, Mongoose
Profile: Cut Quality

25 Power Law Problems: METIS 5, Mongoose

- METIS 5.0.2
- Mongoose
Remarks

• Mongoose tends to find better cuts than METIS 5.0.2 for large graphs.

• Mongoose ties METIS 5.0.2 for time.
 – Future Work
 • Optimize quadratic programming formulation
 • Use randomization and parallelization
Questions?