Sign Patterns That Allow Strong Eventual Nonnegativity

Craig Erickson

Department of Mathematics
Iowa State University

2012 SIAM Annual Meeting
12 July 2012

Joint work with M. Catral, L. Hogben, D.D. Olesky, and P. van den Driessche
Introduction
EP and SEN Matrices
PEP and PSEN Sign Patterns
Classifications

Sign Patterns

Definition

▶ A sign pattern matrix (or sign pattern) A, is a matrix having entries in $\{+, -, 0\}$.

▶ For a real matrix A, $\text{sgn}(A)$ is the sign pattern having entries that are the signs of the corresponding entries in A.

▶ The set $Q(A)$ of all matrices $A \in \mathbb{R}^{n \times n}$ such that $\text{sgn}(A) = A$ is called the qualitative class of A.

▶ A real matrix $A \in Q(A)$ is a realization of A.
The Digraph of a Sign Pattern

Definition
If $\mathcal{A} = [\alpha_{ij}]$ is an $n \times n$ sign pattern, then the digraph of \mathcal{A} is

$$\Gamma(\mathcal{A}) = (\{1, \ldots, n\}, \{(i, j) : \alpha_{ij} \neq 0\}).$$

Definition
A digraph is strongly connected if for any two vertices u and v, there is a path from u to v.
Definition
A matrix A is \textit{reducible} if there exists a permutation matrix P such that

$$PAP^T = \begin{bmatrix} B & 0 \\ X & C \end{bmatrix}$$

where B and C are square matrices, 0 is a zero matrix, and X is any matrix. If such P does not exist, then A is \textit{irreducible}.

Fact
A matrix or a sign pattern is irreducible if and only if its digraph is strongly connected.
Definition
A matrix A is *reducible* if there exists a permutation matrix P such that

$$PAP^T = \begin{bmatrix} B & 0 \\ X & C \end{bmatrix}$$

where B and C are square matrices, 0 is a zero matrix, and X is any matrix. If such P does not exist, then A is *irreducible*.

Fact
A matrix or a sign pattern is irreducible if and only if its digraph is strongly connected.
Definition
A digraph is *primitive* if:

1. It is strongly connected, and
2. the greatest common divisor of the cycle-lengths is 1.

Definition
A nonnegative sign pattern A is *primitive* if its digraph is primitive.
Perron’s Theorem (1904)

If $A \in \mathbb{R}^{n \times n}$ is a (entry-wise) positive matrix (denoted $A > 0$), then

1. $\rho(A)$ is a simple (nonzero) eigenvalue.
2. $\rho(A)$ has positive right (and left) eigenvector.

Perron-Frobenius Theorem

Let A be an irreducible nonnegative matrix. Then

1. $\rho(A)$ is a simple (nonzero) eigenvalue.
2. $\rho(A)$ has positive right (and left) eigenvector.
Perron’s Theorem (1904)

If $A \in \mathbb{R}^{n \times n}$ is a (entry-wise) positive matrix (denoted $A > 0$), then

1. $\rho(A)$ is a simple (nonzero) eigenvalue.
2. $\rho(A)$ has positive right (and left) eigenvector.

Perron-Frobenius Theorem

Let A be an irreducible nonnegative matrix. Then

1. $\rho(A)$ is a simple (nonzero) eigenvalue.
2. $\rho(A)$ has positive right (and left) eigenvector.
Definition
A matrix A has the *strong Perron-Frobenius property* if A has a simple real eigenvalue λ where:

1. $\lambda = \rho(A)$.
2. If α is any other eigenvalue, then $|\alpha| < \lambda$.
3. The corresponding (right) eigenvector is positive.
EP Matrices

Definition
A matrix $A \in \mathbb{R}^{n \times n}$ is \textit{eventually positive} (EP) (\textit{eventually nonnegative}, EN) if there exists a $k_0 \in \mathbb{Z}^+$ such that for all $k \geq k_0$, $A^k > 0$ ($A^k \geq 0$).

Theorem (Handelman 1981)
Let $A \in \mathbb{R}^{n \times n}$. The following are equivalent:

1. A is EP.
2. Both A and A^T satisfy the strong Perron-Frobenius property.
3. There exists a $k \in \mathbb{Z}^+$ such that $A^k > 0$ and $A^{k+1} > 0$.
EP Matrices

Definition
A matrix $A \in \mathbb{R}^{n \times n}$ is *eventually positive* (EP) (*eventually nonnegative*, EN) if there exists a $k_0 \in \mathbb{Z}^+$ such that for all $k \geq k_0$, $A^k > 0$ ($A^k \geq 0$).

Theorem (Handelman 1981)
Let $A \in \mathbb{R}^{n \times n}$. The following are equivalent:

1. A is EP.
2. Both A and A^T satisfy the strong Perron-Frobenius property.
3. There exists a $k \in \mathbb{Z}^+$ such that $A^k > 0$ and $A^{k+1} > 0$.
SEN Matrices

Definition
A matrix A is *strongly eventually nonnegative (SEN)* if A is EN and some power of A is both nonnegative and irreducible.

Observation
If a matrix A is EP, then A is SEN.
SEN Matrices

Definition
A matrix A is strongly eventually nonnegative (SEN) if A is EN and some power of A is both nonnegative and irreducible.

Observation
If a matrix A is EP, then A is SEN.
Example

The matrix

\[
A = \begin{bmatrix}
0 & 0 & 1 & 1 \\
0 & 0 & 1 & -\frac{1}{2} \\
1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{bmatrix}
\]

is SEN but not EP. Both \(A^2\) and \(A^3\) are nonnegative and \(A^3\) is irreducible. \(\Gamma(A)\) is bipartite, so \(A\) is not EP.
Example

The matrix

\[A = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & -\frac{1}{2} \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \]

is SEN but not EP. Both \(A^2 \) and \(A^3 \) are nonnegative and \(A^3 \) is irreducible. \(\Gamma(A) \) is bipartite, so \(A \) is not EP.
Proposition

Let A be an SEN matrix. Then $\rho(A)$ is a simple eigenvalue of A having positive left and right eigenvectors. With the notation $\rho = \rho(A)$, $r = \#$ dominant eigenvalues of A, and $\omega = e^{2\pi i / r}$, the dominant eigenvalues of A are

$$\{\rho, \rho \omega, \ldots, \rho \omega^{r-1}\}.$$
Definition

For $r \geq 2$, matrix $A \in \mathbb{R}^{n \times n}$ is called r-cyclic if there exists a permutation matrix P such that PAP^T has the block form

$$
\begin{bmatrix}
0 & A_{12} & 0 & \ldots & 0 \\
0 & 0 & A_{23} & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & A_{r-1,r} \\
A_{r1} & 0 & 0 & \ldots & 0
\end{bmatrix}
$$

Observation

No r-cyclic matrix is EP.
Definition
For \(r \geq 2 \), matrix \(A \in \mathbb{R}^{n \times n} \) is called \(r \)-cyclic if there exists a permutation matrix \(P \) such that \(PAP^T \) has the block form

\[
\begin{bmatrix}
0 & A_{12} & 0 & \ldots & 0 \\
0 & 0 & A_{23} & \ldots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & A_{r-1,r} \\
A_{r1} & 0 & 0 & \ldots & 0
\end{bmatrix}
\]

Observation
No \(r \)-cyclic matrix is EP.
Definition
A sign pattern \mathcal{A} is potentially eventually positive (PEP) (potentially eventually nonnegative, PEN) if there exists some realization $A \in Q(\mathcal{A})$ such that A is EP (EN).

Definition
A sign pattern \mathcal{A} is potentially strongly eventually nonnegative (PSEN) if there exists some realization $A \in Q(\mathcal{A})$ such that A is SEN.
Definition
A sign pattern \mathcal{A} is *potentially eventually positive (PEP)* (potentially eventually nonnegative, *PEN*) if there exists some realization $A \in \mathcal{Q}(\mathcal{A})$ such that A is EP (EN).

Definition
A sign pattern \mathcal{A} is *potentially strongly eventually nonnegative (PSEN)* if there exists some realization $A \in \mathcal{Q}(\mathcal{A})$ such that A is SEN.
Observation (Handelman, 1981)

If A is a PEP sign pattern, then every row and column has at least one $+$ entry.

Observation

If A is a PSEN sign pattern, then every row and column has at least one $+$ entry.
Observation (Handelman, 1981)

If A is a PEP sign pattern, then every row and column has at least one $+$ entry.

Observation

If A is a PSEN sign pattern, then every row and column has at least one $+$ entry.
Subpatterns and Superpatterns

Definition
Let \mathcal{A} and \mathcal{B} be sign patterns. If you can obtain \mathcal{B} by changing any of the entries in \mathcal{A} to 0, then

- \mathcal{B} is a subpattern of \mathcal{A}.
- \mathcal{A} is a superpattern of \mathcal{B}.

Note that \mathcal{A} is both a subpattern and superpattern of itself.

Example

Let $\mathcal{B} = \begin{bmatrix} - & 0 \\ 0 & 0 \end{bmatrix}$ and $\mathcal{A} = \begin{bmatrix} - & + \\ - & 0 \end{bmatrix}$.

Then \mathcal{B} is a subpattern of \mathcal{A}, and \mathcal{A} is a superpattern of \mathcal{B}.
Subpatterns and Superpatterns

Definition
Let A and B be sign patterns. If you can obtain B by changing any of the entries in A to 0, then

- B is a subpattern of A.
- A is a superpattern of B.

Note that A is both a subpattern and superpattern of itself.

Example
Let $B = \begin{bmatrix} - & 0 \\ 0 & 0 \end{bmatrix}$ and $A = \begin{bmatrix} - & + \\ - & 0 \end{bmatrix}$. Then B is a subpattern of A, and A is a superpattern of B.
Subpatterns and Superpatterns

Theorem (AIM paper - 2010)

1. Let A be a PEP sign pattern, then every superpattern of A is PEP.

2. Let B be a sign pattern which is not PEP, then no subpattern of B is PEP.

The pattern $\begin{bmatrix} 0 & + \\ + & 0 \end{bmatrix}$ is PSEN; however, $\begin{bmatrix} - & + \\ + & 0 \end{bmatrix}$ is not PSEN since the dominant eigenvalue of any realization is negative.
Subpatterns and Superpatterns

Theorem (AIM paper - 2010)

1. Let A be a PEP sign pattern, then every superpattern of A is PEP.

2. Let B be a sign pattern which is not PEP, then no subpattern of B is PEP.

The pattern $\begin{bmatrix} 0 & + \\ + & 0 \end{bmatrix}$ is PSEN; however, $\begin{bmatrix} - & + \\ + & 0 \end{bmatrix}$ is not PSEN since the dominant eigenvalue of any realization is negative.
In the 2010 AIM paper it is shown that the minimum number of $+$ entries in a PEP sign pattern is $n + 1$.

The adjacency graph of the cycle on n vertices is SEN: the minimum number of $+$ entries in a PSEN sign pattern is n.

Theorem

Let A be an $n \times n$ PSEN sign pattern with exactly $n +$ entries. Then $A \geq 0$, i.e., $\Gamma(A)$ is the directed n-cycle.
In the 2010 AIM paper it is shown that the minimum number of $+$ entries in a PEP sign pattern is $n + 1$.

The adjacency graph of the cycle on n vertices is SEN: the minimum number of $+$ entries in a PSEN sign pattern is n.

Theorem

Let A be an $n \times n$ PSEN sign pattern with exactly $n + 1$ entries. Then $A \succeq 0$, i.e., $\Gamma(A)$ is the directed n-cycle.
In the 2010 AIM paper it is shown that the minimum number of $+$ entries in a PEP sign pattern is $n + 1$.

The adjacency graph of the cycle on n vertices is SEN: the minimum number of $+$ entries in a PSEN sign pattern is n.

Theorem

Let A be an $n \times n$ PSEN sign pattern with exactly $n + 1$ entries. Then $A \geq 0$, i.e., $\Gamma(A)$ is the directed n-cycle.
Theorem

If A is PSEN, then A is either PEP or r-cyclic.

Sketch of proof:

- Let $A \in Q(A)$ be SEN and r be # of dominant eigenvalues.
- If $r = 1$, A is EP so assume $r \geq 2$.
- $A^{kr+1} \geq 0$ is r-cyclic for $k > \max\{k_0, n\}$.
- Partition A conformally with A^{kr+1} (permute if necessary to get in “nice” form).
- If A is not r-cyclic, there are some nonzero entries outside the r-cyclic components.
- Perturbing some of those entries will yield an EP matrix.
Theorem

If A is PSEN, then A is either PEP or r-cyclic.

Sketch of proof:

- Let $A \in \mathcal{Q}(A)$ be SEN and r be # of dominant eigenvalues.
- If $r = 1$, A is EP so assume $r \geq 2$.
- $A^{kr+1} \geq 0$ is r-cyclic for $k > \max\{k_0, n\}$.
- Partition A conformally with A^{kr+1} (permute if necessary to get in “nice” form).
- If A is not r-cyclic, there are some nonzero entries outside the r-cyclic components.
- Perturbing some of those entries will yield an EP matrix.
Theorem

If A is PSEN, then A is either PEP or r-cyclic.

Sketch of proof:

- Let $A \in \mathcal{Q}(A)$ be SEN and r be # of dominant eigenvalues.
- If $r = 1$, A is EP so assume $r \geq 2$.
- $A^{kr+1} \geq 0$ is r-cyclic for $k > \max\{k_0, n\}$.
- Partition A conformally with A^{kr+1} (permute if necessary to get in “nice” form).
- If A is not r-cyclic, there are some nonzero entries outside the r-cyclic components.
- Perturbing some of those entries will yield an EP matrix.
Theorem

If A is PSEN, then A is either PEP or r-cyclic.

Sketch of proof:

- Let $A \in \mathcal{Q}(A)$ be SEN and r be # of dominant eigenvalues.
- If $r = 1$, A is EP so assume $r \geq 2$.
- $A^{kr+1} \geq 0$ is r-cyclic for $k > \max\{k_0, n\}$.
- Partition A conformally with A^{kr+1} (permute if necessary to get in “nice” form).
- If A is not r-cyclic, there are some nonzero entries outside the r-cyclic components.
- Perturbing some of those entries will yield an EP matrix.
Theorem

If A is PSEN, then A is either PEP or r-cyclic.

Sketch of proof:

- Let $A \in \mathcal{Q}(A)$ be SEN and r be # of dominant eigenvalues.
- If $r = 1$, A is EP so assume $r \geq 2$.
- $A^{kr+1} \geq 0$ is r-cyclic for $k > \max\{k_0, n\}$.
- Partition A conformally with A^{kr+1} (permute if necessary to get in “nice” form).
- If A is not r-cyclic, there are some nonzero entries outside the r-cyclic components.
- Perturbing some of those entries will yield an EP matrix.
Classification of small PSEN sign patterns

Definition
Two sign patterns \mathcal{A} and \mathcal{B} are equivalent if there exists a permutation matrix P such that $\mathcal{B} = P \mathcal{A} P^T$ or $\mathcal{B} = P \mathcal{A}^T P^T$.

Theorem

For an $n \times n$ sign pattern A with $n \leq 3$, A is PSEN if and only if one of the following is true:

i. A^+ is primitive (hence A is PEP).

ii. $n = 3$ and A is equivalent to a sign pattern of the form

$$B = \begin{bmatrix}
+ & - & \ominus \\
+ & ? & - \\
- & + & +
\end{bmatrix}.$$

Where \ominus is one of $\{0, -\}$ and $?$ is one of $\{0, +, -\}$ (hence A is PEP).

iii. $A \geq 0$ and A is irreducible.
Thank You!