Inverse Problems in Power System Dynamics

Ian A. Hiskens
Vennema Professor of Engineering
Department of Electrical Engineering and Computer Science

Michigan Engineering
Motivation

• Analysis of real-world systems is challenging.
• Investigations rely on simulation.
 – Typically address forward problems.
 – Can more information be obtained?
• Many analysis questions take the form of inverse problems.

System identification Causation
Hybrid dynamical systems

Characterized by

- Continuous and discrete states
- Continuous dynamics
- Discrete events (triggers)
- Mappings that define the evolution of states at events

Compass gait biped robot (mechanical processes)

Power systems (electrical processes)
Hybrid system modelling

Differential Algebraic Impulsive Switched (DAIS) model

- Starting point is the familiar DAE model
 \[
 \begin{align*}
 \dot{x} &= f(x, y) \\
 0 &= g(x, y)
 \end{align*}
 \]

- Switched events have the form
 \[
 g(x, y) = \begin{cases}
 g^-(x, y) & s(x, y) < 0 \\
 g^+(x, y) & s(x, y) > 0
 \end{cases}
 \]

- Impulsive events
 \[
 x^+ = h(x^-, y^-) \quad \text{when} \quad s(x, y) = 0
 \]

The model generates the (piecewise smooth) *flow*
\[
 x(t) = \phi(x_0, t), \quad y(t) = \psi(x_0, t)
 \]
Trajectory sensitivities

- Linearize the system around a trajectory rather than around the equilibrium point.
 \[\Delta x(t) = \frac{\partial \phi(x_0, t)}{\partial x_0} \Delta x_0 + \text{higher order terms} \approx \Phi(t) \Delta x_0 \]

- Determine the change in the trajectory due to (small) changes in parameters and/or initial conditions.
 - Parameters incorporated via \(\dot{\lambda} = 0, \quad \lambda(0) = \lambda_0 \)

- Provides gradient information for iteratively solving inverse problems.
Trajectory sensitivity evolution

• Along smooth sections of the trajectory

System evolution

\[\dot{x} = f(x), \quad x(0) = x_0 \]

Sensitivity evolution

\[\dot{\Phi} = \left. \frac{\partial f}{\partial x} \right|_{x(t)} \Phi, \quad \Phi(0) = I \]

• At an event

\[\Phi(\tau^+) = \Phi(\tau^-) - (f^+ - f^-) \frac{\partial \tau}{\partial x_0} \]
Implicit numerical integration allows efficient computation of trajectory sensitivities.

System evolution
\[\dot{x} = f(x) \]

Trapezoidal integration
\[x^{k+1} = x^k + \frac{h}{2} \left(f(x^k) + f(x^{k+1}) \right) \]

Each integration timestep involves a Newton solution process.
- The Jacobian \(\left(\frac{h}{2} Df - I \right) \) must be formed and factored.

Sensitivity evolution
\[\hat{\Phi} = Df(x(t)) \Phi \]

Trapezoidal integration
\[\Phi^{k+1} = \Phi^k + \frac{h}{2} \left(Df(x^k) \Phi^k + Df(x^{k+1}) \Phi^{k+1} \right) \]
\[\Rightarrow \left(\frac{h}{2} Df(x^{k+1}) - I \right) \Phi^{k+1} = -\left(\frac{h}{2} Df(x^k) + I \right) \Phi^k \]

Already factored
Parameter uncertainty

Worst-case analysis: Parameter uncertainty is uniformly distributed over an orthotope \mathcal{B} (multi-dimensional rectangle.)

Assume all trajectories emanating from $x_0 + \mathcal{B}$ have the same order of events.

Trajectory approximation:
Neglecting higher order terms of the Taylor series,

$$
\phi(x_0 + \Delta x_0, t)
\approx \phi(x_0, t) + \Phi(x_0, t)\Delta x_0
$$

Propagation of uncertainty is described (approximately) by the time-varying parallelootope,

$$
\mathcal{P}(t) = \phi(x_0, t) + \Phi(x_0, t)\mathcal{B}
$$
Parameter estimation

- Determine which parameters are *well conditioned*.
- Estimate those parameters.
- Nonlinear least-squares problem.

Real world example:
- Disturbance on the 330kV Scandinavian network.
- A voltage measurement was used to estimate various parameters, including the *switching time* of an important switched reactor.
Dynamic embedded optimization

Problem formulation:

\[\min_{\theta} \mathcal{J}(x, \theta) \]
subject to \(x(t) = \phi(x_0(\theta), t) \)

Cost function may have the form:

\[\mathcal{J}(x, \theta) = \mathcal{E}(x(t_f), \theta) + \int_{t_0}^{t_f} \mathcal{L}(x(t), \theta, t) dt \]

Assumption: Order of events does not change as \(\theta \) varies.
- Switching surfaces are always transversally crossed, no grazing.
- All flows have the same history.
- Trajectory sensitivities exist.

If \(\mathcal{J} \) is a smooth function of its arguments, then it is continuously differentiable with respect to \(\theta \).
- Gradient-based algorithms are applicable.
Optimization example

Improve damping by optimizing PSS limits.

Optimization adjusted lower PSS limit from -0.1 to –0.33.
Limit cycles (periodic behaviour)

- Analysis and computation are based on Poincaré map concepts.
- Solve \(F_l(x) := \phi(x, \tau_r(x)) - x = 0 \) where \(\tau_r(x) \) is the return time.
- Reliable convergence, even for unstable limit cycles.

- Limit cycles may be non-smooth.
- **Example:** Interactions between a tap-changing transformer and a switched capacitor.
Grazing phenomena

- Tangential encounter between the trajectory and a specified surface.
- Solve

\[\phi(x_0(\theta_g), t_g) - x_g = 0 \]
\[b(x_g) = 0 \]
\[\nabla b(x_g) \top f(x_g) = 0 \]

Example: Distance protection – determine bounding value of parameters that induce protection operation.
Shooting methods

- **Point solutions**: Solve \(F(z) = 0 \) where \(F \) incorporates the flow \(\phi \).
 - Newton solution: \(z^{k+1} = z^k - DF(z^k)^{-1} F(z^k) \)
 - Evaluation of \(F \) requires simulation to determine \(\phi \).
 - Evaluation of \(DF \) requires trajectory sensitivities \(\Phi \).

- **Continuation process**: Under-determined system \(F : \mathbb{R}^{n+1} \to \mathbb{R}^n \)
 - Solutions of \(F(z) = 0 \) describe a 1-manifold.

- **Optimization**.
Example: bifurcations

Single machine infinite bus system.
Conclusions

• Most real-world systems are hybrid (exhibit interactions between continuous dynamics and discrete events).

• Systematic modelling of hybrid systems enables:
 – Well defined and efficiently computed trajectory sensitivities.
 – Gradient-based techniques for solving optimization and boundary value problems.
 – Algorithms for moving beyond forward problems.