Gerrymandering for justice: Redistricting U.S. liver allocation

Daniel H. Wagner Prize Competition

Sommer Gentry
Department of Mathematics
United States Naval Academy

Dorry Segev
Department of Surgery
Johns Hopkins University
DSAs (donation service areas)
Range of transplant rates, by DSA

MELD 38-39: 18% to 86%
Range of waiting list death rate, by DSA

MELD 38-39: 14% to 82%
Department of Health and Human Services Final Rule (1998) 42 CFR Part 121.8(b)

“Neither place of residence nor place of listing shall be a major determinant of access to a transplant.”
DSAs are partitioned into regions
“But the debate is not just about saving lives... the fight, they say, is about which transplant centers -- not which patients -- will get the scarce organs, and the profits and prestige that go with them.”
Optimal Redistricting

• Redistricting uses integer programming to design geographic boundaries between units
 – There is a substantial body of OR literature on redistricting for voting districts and school districts, dating from 1950s to the present

• Our contribution is in formulating a transparent, transplant-relevant model

• We partition the DSAs into new districts
 – design first (OPL/CPLEX), then analyze (LSAM)
Partition DSAs into districts

Under redistricting, livers would be allocated to the sickest candidate anywhere in the district.
Prior work: redistricting liver allocation

• Institute of Medicine (1999)
• Maximize a pure efficiency metric (Kong et. al 2010)
• Maximize a combined efficiency / equity metric (Stahl et. al 2005, Demirci et. al 2012)
• Redistricts using branch and price approaches, plus decomposition using geographic covers
• Neglects MELD prioritization of candidates in the definition of equity, overweights the impact of transport distance on transplant success rate, and depends on an inaccurate notion of liver compatibility matching
Redistricting Objective

• Minimize *number of misdirected organs*
 – Misdirected organs = difference between number of donors a district *should* have (if organs went to highest MELD patient anywhere in the country) and number of donors in a proposed district
 – Minimize sum of these disparities over all districts

• Pure equity objective
 – MELD predicts waiting list death
 – Getting each liver to the sickest candidate should also be efficient, reducing waiting list deaths
Liver Committee’s design constraints

• Districts should be contiguous.*
• The number of districts should be at least 4 and no more than 8.
• The maximum median transplant-volume-weighted transport time between DSAs is 3 hours.
• Minimum number of transplant centers per district is 6.
\[I = K = \{1, 2, 3, \ldots, 57\} \text{ DSAs} \]

\[w_{ik} = 1 \text{ if DSA } i \text{ is in the district with center at DSA } k, \text{ and 0 if not} \]

\[Y_k = 1 \text{ if DSA } k \text{ is selected as the center of a district, and 0 if not} \]

\[c_k = \text{ active liver transplant centers in DSA } k \]

\[d_k = \text{ donors available in DSA } k \]

\[p_k = \text{ number of donors that should go to DSA } k \text{ with national-level allocation} \]

\[\delta_{ij} = \text{ volume-weighted distance from DSA } i \text{ to } j \]

\[\tau_{ij} = \text{ volume-weighted transport time between DSAs } i \text{ and } j \]
Objective: minimize geographic disparity in liver availability by minimizing the sum of misdirected livers

Minimize: \[\sum_{k \in \mathcal{K}} \left| \sum_{i \in \mathcal{I}} p_i W_{ik} - \sum_{i \in \mathcal{I}} d_i W_{ik} \right| \]
subject to: \[
\sum_{k \in K} W_{ik} = 1 \quad \text{for all } i \in I
\]
\[
W_{ik} - Y_k \leq 0 \quad \text{for all } i \in I \text{ and } k \in K
\]

Each DSA is assigned to one district

If a DSA \(k \) is assigned as the center of the district containing DSA \(i \),
\(Y_k \) should be 1
Number of districts is N

Require at least \bar{h} transplant centers in each district

$$\sum_{k \in \mathcal{K}} Y_k = N$$

$$\sum_{i \in \mathcal{I}} h_i W_{ik} \geq \bar{h} Y_k \quad \text{for all } k \in \mathcal{K}$$
Maximum transport time from each district to its district center is $\bar{\tau}$

\[W_{ik} \tau_{ik} \leq \bar{\tau} \quad \text{for all } i \in \mathcal{I} \text{ and } k \in \mathcal{K} \]
\[
\sum_{k \in \mathcal{K}} \alpha_{ijk} W_{ik} \leq 1 - Y_j \quad \text{for all } i \in \mathcal{I} \text{ and } j \in \mathcal{K}
\]

\[\delta_{ij} = \text{volume-weighted distance from DSA } i \text{ to } j\]

\[\alpha_{ijk} = \begin{cases} 1 \text{ if } \delta_{ik} > \delta_{ij}, & 0 \text{ if not} \end{cases}\]

Every DSA is assigned to its nearest district center

(Daskin, Service Science, 2010)
8 districts
4 districts
Liver Simulated Allocation Model

• The redistricting integer program is greatly simplified
 – Assume MELDs are fixed, does not model deaths
 – Assumes all offers are accepted
 – Assumes all livers are identical

• Liver Simulated Allocation Model reintroduces realistic clinical detail
 – Standard deviation of median MELD at transplant among DSAs is a dynamic geographic equity metric
Liver Simulated Allocation Model

Thompson and Waisanen, 2004
Organ Transport Time Model

• Distance is very weakly correlated with cold ischemia time

• Delay attributable to allocation is the transport time from donor hospital to transplant center

• Detailed transport model uses:
 – Locate all donor/transplant centers and airports
 – Google API for driving times
 – Flight times plus drive times to airport locations
 – Decision: drive if drive time <2 hours, or if drive time < flying time
Transport and transplant costs

• Transport cost
 – by car (Lynch RJ et al. 2009): $1108
 – by helicopter: $4742
 – by charter aircraft: according to linear regression fit from flight distance and cost records

• Pre-transplant, transplant, and post-transplant costs for all candidates
 – Adjusts for MELD, age, comorbidities, etc.
Simulated redistricting impacts over 5 years

<table>
<thead>
<tr>
<th>Allocation</th>
<th>Misdirected Livers</th>
<th>Std Dev MELD</th>
<th>Net Waitlist Deaths</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local</td>
<td>2363</td>
<td>3.01</td>
<td>0</td>
</tr>
<tr>
<td>Regional</td>
<td>1317</td>
<td>3.26</td>
<td>-165</td>
</tr>
<tr>
<td>National</td>
<td>0</td>
<td>1.66</td>
<td>-344</td>
</tr>
<tr>
<td>4 Districts</td>
<td>128</td>
<td>1.87</td>
<td>-554</td>
</tr>
<tr>
<td>8 Districts</td>
<td>156</td>
<td>2.08</td>
<td>-332</td>
</tr>
</tbody>
</table>
Disparity in transplant MELD, local
Disparity in transplant MELD, regional
Disparity in transplant MELD, 8 districts
Disparity in transplant MELD, 4 districts
Redistricting and organ transport

<table>
<thead>
<tr>
<th>Allocation</th>
<th>Median Time</th>
<th>Median Distance</th>
<th>% Flying</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local</td>
<td>1.5 hours</td>
<td>68 miles</td>
<td>44%</td>
</tr>
<tr>
<td>Regional</td>
<td>1.7 hours</td>
<td>137 miles</td>
<td>61%</td>
</tr>
<tr>
<td>4 Districts</td>
<td>2.1 hours</td>
<td>340 miles</td>
<td>74%</td>
</tr>
<tr>
<td>8 Districts</td>
<td>1.8 hours</td>
<td>178 miles</td>
<td>64%</td>
</tr>
</tbody>
</table>
Redistricting is cost-saving

<table>
<thead>
<tr>
<th>Allocation</th>
<th>Transport Cost</th>
<th>Pre-transplant Cost</th>
<th>Transplant Cost</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local</td>
<td>$125 mil</td>
<td>$1629 mil</td>
<td>$3576 mil</td>
<td>$5330 mil</td>
</tr>
<tr>
<td>Regional</td>
<td>$165 mil</td>
<td>$1487 mil</td>
<td>$3468 mil</td>
<td>$5120 mil</td>
</tr>
<tr>
<td>4 Districts</td>
<td>$191 mil</td>
<td>$1358 mil</td>
<td>$3453 mil</td>
<td>$5002 mil</td>
</tr>
<tr>
<td>8 Districts</td>
<td>$176 mil</td>
<td>$1387 mil</td>
<td>$3462 mil</td>
<td>$5025 mil</td>
</tr>
</tbody>
</table>
Change Needed in Deceased-Donor Liver Allocation

Receiving a life-saving liver transplant from a deceased donor seems to hinge on what part of the country the hopeful recipient of an organ resides, with odds weighing more heavily in favor of patients in less densely populated parts of the country. Organ transplantation policy researchers addressed this disparity from various perspectives during Sunday’s Controversies in Transplantation.

“The consensus among major organ policy experts is favoring small, incremental steps to broaden distribution with the goal to minimize waitlist deaths and limit the distance the organ needs to travel,” said James F. Markmann, MD, PhD, Chief, Division of Transplant Surgery, Massachusetts General Hospital, Boston. “Elimination of geographic disparities may not only
The existing geographic disparity in allocation of organs for transplant is unacceptably high.

The Board directs organ-specific committees to define the metric of fairness and any constraints for each organ system by June 30, 2013...

The Board requests that optimized systems utilizing overlapping versus non-overlapping geographic boundaries be compared, including using or disregarding current DSA and region boundaries in allocation.
OPTN/UNOS Liver and Intestinal Organ Transplantation Committee

August 21, 2013 3pm EDT

1. **Committee Priorities, 2013-2014.** The Committee leadership met via conference call to prioritize the long list of approved projects for the 2013-2014 year. The top three priorities for the year are as follows:

 - Liver Distribution Redesign Modeling
 - Develop materials to educate RRB members / promote consistent review of exceptions / Ongoing review of MELD/PELD Exceptions
 - Changes to Policy for Hepatocellular Carcinoma (HCC) Exceptions
“In short, the unanimous vote taken on April 1st that sent two optimized redistricting plans forward for public comment was unprecedented. I could not have imagined that every single member of the Liver Committee, including members representing transplant centers that are expected to do fewer liver transplants as a result of redistricting, would vote in favor.”

- Dr. David Mulligan, Chair, OPTN Liver and Intestinal Transplantation Committee
September 2014 public forum
The long policy road

• First, the OPTN Liver Committee must issue a formal proposal incorporating input from the public forum
• A required public comment period begins no earlier than March 2015
• The policy could be implemented in November 2015 with the approval of the OPTN Board of Directors
Lessons for implementing OR solutions in healthcare

• Build transparent optimization models
• Enable decision-makers to focus on principles and objectives, not on constructing or critiquing ad hoc policies
• Make things as simple as they must be, but then use simulation to make them detailed enough to be plausible to clinicians
Lessons for implementing OR solutions in healthcare

• Develop credibility through years of engagement with particular communities of healthcare practice
 – Optimizing kidney exchange (Segev et al. 2005, Gentry et al. 2005, plus)
 – An act of Congress (Charlie W. Norwood Act, 2007)
 – Advised OPTN on creating its national kidney exchange registry, donated our software

• Engagement with OPTN Liver Committee
 – We thank these physicians and other representatives for their contributions
Thank you to our colleagues at the Scientific Registry for Transplant Recipients

John Lake, MD
David Zaun, PhD
Ajay Israni, MD
Jon Snyder, PhD
Josh Pyke, PhD
Eugene Shteyn, MS
Bert Kasiske, MD PhD
Epidemiology Research Group in Organ Transplantation

Dorry Segev, MD PhD, Director

Core Research Group

Medicine/Surgery
- Morgan Grams, MD PhD
 - Nephrology Faculty
- Rebecca Craig-Schapiro, MD
 - Surgery Resident
- Jackie Garonzik-Wang, MD PhD
 - Surgery Resident
- Elizabeth King, MD
 - Surgery Resident
- Babak Orandi, MD PhD MSc
 - Surgery Resident
- Kyle Van Arendonk, MD PhD
 - Surgery Resident
- Israel Olorunda, MBBS MPH PostDoc
- Natasha Gupta
 - Medical Student
- Lauren Kucirka, ScM
 - MD/PhD Student
- Maria Lourdes Perez, DVM
 - Laboratory Science

Epidemiology
- Allan Massie, PhD
 - Epidemiology
- Mara McAdams-DeMarco, PhD
 - Epidemiology
- Tanjala Purnell, PhD
 - Epidemiology
- Abi Muzaale, MD, MHS
 - Epidemiology Postdoc
- Megan Salter, PhD
 - Epidemiology Postdoc
- Andrew Law, ScM
 - Epidemiology Staff
- Xun Luo, MD MPH
 - Epidemiology Staff
- Anna Poon, MHS
 - Epidemiology Staff

Graduate Students
- Young Mee Choi
 - Epidemiology; MPH Student
- Sachin Patel
- Michael Setteducato
 - Public Health MHS
- Sara Hawa
 - Nursing Student
- Diana Cantu-Reyna
 - Nursing Student
- Mary Grace Bowring
 - Epidemiology MPH Student
- Jenny Cui
 - Epidemiology MPH Student

Economics
- Lauren Nicholas, PhD

Research Assistants
- **Full-Time:** Jennifer Alejo, Tyler Barnum, Ryan Brown, Cassandra Delp, Erika Jones, Komal Kumar, Kathryn Marks, James Tonascia, Amanda Weaver
- **Part-Time:** Lindsay Adam, Saad Anjum, Kate Appel, Seal-Bin Han, Maurice Dunn, Laura Grau, Teal Harrison, Kyra Isaacs, Billy Kim, Arnaldo Mercado-Perez, Ashley Millette, Maisa Nimer, Ana Quintanai, Katrina Rios, Sumukh Shetty

Computational Science
- Sommer Gentry, PhD
 - Computer Science
- Eric Chow, MHS
 - Decision Process Models
- Corey Wickliffe
 - Geographic Information Systems

Affiliated
- Daniel Scharfstein, ScD
 - Biostatistics
- Ravi Vardhan, PhD
 - Biostatistics
- Lucy Meoni, ScM
 - Biostatistics
- Josef Coresh, MD PhD
 - Epidemiology
- Andrew Cameron, MD PhD
 - Surgery
- Niraj Desai MD
 - Surgery
- Robert Montgomery, MD DPhil
 - Surgery
- Nabil Dagher, MD
 - Surgery
- Elliott Haut, MD PhD
 - Surgery
- Kim Steele, MD PhD
 - Surgery
- Diane Schwartz, MD
 - Surgery
- Aliaksei Pustavoita, MD
 - Anesthesiology