CO₂ Laser-Produced Sn-plasma Source for High-volume Manufacturing EUV Lithography

Akira Endo*

Extreme Ultraviolet Lithography System Development Association
Gigaphoton Inc*

2008 EUVL Workshop
11 June, 2008
Wailea Marriott Hotel, Hawaii

Acknowledgments
This work was supported by the New Energy and Industrial Technology Development Organization -NEDO- Japan.
Introduction
 - LPP source roadmap and concept

Update of CO\textsubscript{2} laser produced Sn plasma source
 - Laser output power
 - Sn droplet target
 - Sn plasma guiding by magnetic field

LPP/EUV future direction to HVM

Summary
LPP Source Roadmap

<table>
<thead>
<tr>
<th></th>
<th>1st Mid term 2004/9</th>
<th>2nd Mid term 2006/3</th>
<th>EUVA Final 2008/3</th>
<th>HVM source-1 2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>EUV Power (IF)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stability</td>
<td>5.7W 1)</td>
<td>10W 1)</td>
<td>50W 2)</td>
<td>110W 2) /140W 3)</td>
</tr>
<tr>
<td>Laser</td>
<td>YAG:1.5kW 10kHz</td>
<td>CO₂:2.6kW 100kHz</td>
<td>CO₂: 7.5kW 100kHz</td>
<td>CO₂: 10kW 100kHz</td>
</tr>
<tr>
<td>Laser freq.</td>
<td>0.9%</td>
<td>0.9%</td>
<td>2.5%</td>
<td>4%</td>
</tr>
<tr>
<td>CE (source)</td>
<td>Xe-Jet</td>
<td>SnO₂ choroid</td>
<td>Sn-Droplet</td>
<td>Sn-Droplet</td>
</tr>
<tr>
<td>Target</td>
<td></td>
<td>liquid jet</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EUVA project

Technology for <10W
- Nd:YAG Laser, Liquid Xe jet

Technology for 115-200W
- CO₂ Laser, Sn droplet target
- Magnetic field mitigation

Note
Primary source to IF EUV transfer efficiency:
1) 43%
2) 28% with SPF
3) 36% without SPF
Light Source Concept

Requirement for EUV source for HVM

- High EUV power >115 W
- EUV Stability
- Collector mirror lifetime
- Low CoG / CoO

CO2 laser + Sn LPP light source + Magnetic field plasma guide

High power pulsed CO₂ Laser

Magnetic field plasma guiding

Sn collector

Sn target supply

LPP: Laser-Produced Plasma
LPP Concept : History

2001: Concept of CO₂ laser based LPP source. (Patent applied in 2001)
2001: Concept of MOPA CO₂ laser based LPP source. (Patent applied in 2001)
2002 /09: EUVA light source project starts (with Gigaphoton, USHIO and Komatsu)
2003: Concept of Magnetic field ion mitigation (Patent applied in 2004)
2004 /09: EUV 5.7 W IF was demonstrated (Nd:YAG and Xe jet)
2006 /03: EUV 10 W IF was demonstrated (CO₂ and SnO₂ choroid liquid jet)
2007 /02: EUV 40 W IF was demonstrated (CO₂ and Sn target)
2007 /10: EUV 60 W IF was demonstrated (CO₂ and Sn target)
Outline

- Introduction
 - LPP source roadmap and concept

- Update of CO₂ laser produced Sn plasma source
 - Laser output power
 - Sn droplet target
 - Sn guiding by magnetic field

- LPP/EUV future direction to HVM

- Summary
High power CO2 laser MOPA system

<table>
<thead>
<tr>
<th>Laser Power</th>
<th>13 kW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulse Width</td>
<td>20 ns</td>
</tr>
<tr>
<td>Repetition Rate</td>
<td>100 kHz</td>
</tr>
<tr>
<td>Beam quality</td>
<td>M2 1.1</td>
</tr>
<tr>
<td>Pulse energy stability</td>
<td>2% (3s, 500 pulses)</td>
</tr>
</tbody>
</table>

Laser System

- **Oscillator**
 - Wave length: 10.6um
 - Rep. rate: 100kHz
 - Pulse width: 20 ns (FWHM)

- **Pre-Amplifier**
 - RF-excited CO2 laser
 - Pulse width: 20 ns (FWHM)

- **Main-Amplifier**
 - RF-excited CO2 laser

![Laser beam profile](image_url)
EUVV output evaluation at intermediate focus

System configuration

Oscillator → Pre-Amp → Main Amp

Collector mirror
1sr (=3sr x 1/3)

IF
(intermediate focus)

Rotating Sn plate target

Amp laser

EUV chamber
EUV IF power: 16 W (measured by 1sr collector)
60 W (4 sr collector, calculated)

Target: Rotating Sn plate
Laser irradiation power: 6 kW (100 kHz, 20 ns)
EUV energy stability: 3.8% (3σ, 500 pulses)
IF image size: 3.6 mm (H), 3.3 mm (V) at 1/e^2
Etendue: 1.9 mm^2sr (4 sr collector)
Sn droplet target

Sn droplets observed at 50mm from the nozzle

<table>
<thead>
<tr>
<th>Frequency (kHz)</th>
<th>Size (μm)</th>
<th>Spacing (μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>92</td>
<td>φ47</td>
<td>176</td>
</tr>
<tr>
<td>112</td>
<td>φ44</td>
<td>146</td>
</tr>
<tr>
<td>142</td>
<td>φ41</td>
<td>115</td>
</tr>
<tr>
<td>320</td>
<td>φ28</td>
<td>65</td>
</tr>
<tr>
<td>500</td>
<td>φ19</td>
<td>44</td>
</tr>
</tbody>
</table>
Sn droplet target

Droplet generator and deviation system

Isolated 40-um Sn droplets

Deflection electrode

Charging Electrode

Droplet generator

Charging controller
DC or Pulse

Piezo. Driver
Syncro.

Piezo.

Back light

CCD

1mm

4mm

Lo

L

δ
Emission from laser produced plasma

Electron density profile

$n_c = \frac{\varepsilon_0 m \omega^2}{e^2}$

$n_c = \frac{1.11 \times 10^{21} (e/cm^3)}{\lambda^2 (\mu m)}$

<table>
<thead>
<tr>
<th>Critical density n_c (e/cm3)</th>
<th>Frequency $\omega_p/2\pi$</th>
<th>Wavelength λ_c</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5×10^{12}</td>
<td>14 GHz</td>
<td></td>
<td>Ku-band microwave</td>
</tr>
<tr>
<td>1.0×10^{19}</td>
<td></td>
<td>10.6 mm</td>
<td>CO2 laser</td>
</tr>
<tr>
<td>1.0×10^{21}</td>
<td></td>
<td>1.06 mm</td>
<td>Nd:YAG laser</td>
</tr>
<tr>
<td>1.8×10^{22}</td>
<td></td>
<td>248 nm</td>
<td>KrF excimer laser</td>
</tr>
</tbody>
</table>
Double pulse laser irradiation onto Sn droplet

The maximum conversion efficiency of 2.5% is obtained at a YAG-CO2 delay time of about 5μs.
Magnetic field plasma beaming

1) Investigation of Tin ion flux in “Real” 3D-space
2) Optimization of Tin debris evacuation.
Magnetic field plasma guiding

Superconducting magnet was installed for:
1) Investigation of Tin ion flux in “Real” large space.
2) Optimization of Tin debris evacuation.

Visible image of Sn plasma flow in magnetic field
Laser : CO2 laser, Target : Sn plate

Without magnetic field
Magnetic flux density : 2T
Results on symmetry axis with & w/o B-field

Tin ions are effectively confined and guided by the magnetic field.
Magnetic field plasma guiding

Nanopowder

Dendolite

Etching

Sn plate

CO2 laser

22.5°

0°

7.5°

22.5°

52.5°

67.5°

Erosion

Strong deposition

Low deposition

No deposition

No deposition

No deposition
Outline

- Introduction
 - LPP source roadmap and concept

- Update of CO₂ laser produced Sn plasma source
 - Laser output power
 - Sn droplet target
 - Sn guiding by magnetic field

- LPP/EUV future direction to HVM

- Summary
Gigaphoton LPP Light Source

- Sn Droplet
- High power pulsed CO2 laser
- Magnetic-field Plasma Guiding

Sn supply
Magnet
Plasma
IF
CO2 laser
Collector mirror
Sn collector
EUV LPP light source roadmap

<table>
<thead>
<tr>
<th></th>
<th>ETS (Internal use only)</th>
<th>SD (1st Gen.) (proto/integration possible)</th>
<th>HVM (2nd Gen.) (product)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timing</td>
<td>2009/1Q</td>
<td>2009/4Q</td>
<td>2011/1Q</td>
</tr>
<tr>
<td>Power (Source to IF: 34% (R=0.6, 4sr(0.64), T=0.9))</td>
<td>100W</td>
<td>140W</td>
<td>280W</td>
</tr>
<tr>
<td>Drive laser</td>
<td>10kW</td>
<td>10kW</td>
<td>20kW</td>
</tr>
<tr>
<td>CE</td>
<td>3.5%</td>
<td>4.0%</td>
<td>4.0%</td>
</tr>
<tr>
<td>Target</td>
<td>Tin droplet</td>
<td>Tin droplet</td>
<td>←</td>
</tr>
<tr>
<td>Mitigation</td>
<td>Single magnet & ionization</td>
<td>magnet & ionization</td>
<td>←</td>
</tr>
<tr>
<td>C1 Mirror Spec.</td>
<td>4sr 60 Bi-layer, R>60%</td>
<td>TBD Heat Protected</td>
<td>TBD</td>
</tr>
<tr>
<td></td>
<td>Life 200Bplhs</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>Tool interface (I/F)</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Duty</td>
<td>>75%</td>
<td>TBD</td>
<td>TBD</td>
</tr>
</tbody>
</table>
Power roadmap

- **Today to SD**
 - Non-commercial system

- **Commercial system**
 - 140W (SD: 1st generation)
 - 280W (HVM: 2nd generation)

- **Power at IF (W)**
 - 40W (Today)
 - 100W (ETS)
 - 140W (SD: 1st generation)
 - 280W (HVM: 2nd generation)

- **140W will be available in 2010 & 280W in 2011**
Summary

LPP source at EUVA (non-integrated setup)

- Further advance of component technology is reported
 - 13 kW drive laser output power; 100 W in-band EUV at I/F equivalent.
 scalable to 20 kW.
 - Sn droplet active control and 1.5% efficiency is achieved.
- EUV output evaluation at intermediate focus.
 - 60 W at I/F achieved with 6kW CO₂ driver laser power.
 - Preliminary target: solid Sn disk and 2.5% efficiency is achieved.
 - Magnetic field plasma guiding of CO₂ laser produced Sn plasma.
 - Sn deposition reduced by magnetic field.
 - Sn plasma is guided by magnetic field.
 → Basic technology for Sn evacuation is established.

Next step (integrated setup)

- Integrated system demonstration with advanced component technology and mirror lifetime evaluation.